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Brownian motion

Giorgio Parisi

year of physics concept

“I did not believe that it was possible to study the Brownian motion with such a precision.”
From a letter from Albert Einstein to Jean Perrin (1909).

n 30 April 1905, Einstein completed his doctoral
thesis on osmotic pressure, in which he devel-
opedastatistical theory ofliquid behaviour based
around the existence of molecules. This work,
together with his subsequent paper on ‘brownian
motion) constitutes one of the most important, but often over-
looked, contributions that Einstein made to physics.

In the closing decades of the nineteenth century, theoreti-
cal physics was in a state of turmoil. The big outstanding ques-
tions of that time have been much discussed (including within
this collection). Such questions culminated in relativity and
quantum mechanics — theoretical developments in which
Einstein’s key role is being justly celebrated this year. But it
should not be forgotten that Robert Brown’s seemingly
innocuous observations of the irregular motions of a suspen-
sion of pollen grains in water — now known as brownian
motion—also heralded a revolution in physical thought.

Although the concepts of atoms and molecules are now
universally accepted, this was not the case at the turn of the
twentieth century. Ludwig Boltzmann’s statistical interpre-
tation of the laws of thermodynamics — a body of work
deeply rooted in the ensemble dynamical motion of mater-
ial atoms — had many adherents. But there were also many
heavyweight dissenters (for a time including Max Planck),
who did not accept that thermodynamics had its origins in
the reversible motion of invisible hypothetical particles.
And many distinguished physicists of the time (among
them Wilhelm Roentgen) suspected that brownian motion
indicated a clear failure of Boltzmann’s formulation of the
second law of thermodynamics.

It was in this context that Einstein’s explanation for
brownian motion made an initial impression. In particular,
Einstein showed that the irregular motion of the suspended
particles could be understood as arising from the random
thermal agitation of the molecules in the surrounding liquid:
these smaller entities act both as the driving force for the
brownian fluctuations (through the impact of the liquid mol-
eculeson thelarger particles),and asameans of damping these
motions (through the viscosity experienced by the larger par-
ticles). This connection between displacement, x(¢), and the
viscosity, 17, can be expressed (in one dimension) as: <x(#)*> =
RT t/(3Nman), where R is the universal gas constant, N is
Avogadro’s number (2R/3N is Boltzmann’s constant k), T'is
the temperature and ais the radius of the suspended particles.
This finding went beyond simply confirming the existence of
atoms and molecules, and provided a new way of determining
Avogadro’s number. As Einstein himself remarked, the conse-
quence of this relation is that one can see, directly through a
microscope, a fraction of the thermal energy manifest as
mechanical energy. By proving that a statistical mechanics
description could explain quantitatively brownian motion, all
doubts concerning Boltzmann’s statistical interpretation of
the thermodynamiclaws suddenly faded.

But this was not the end of the story. Einstein’s realization
that the fluctuations responsible for the agitation of the sus-
pended particles were the same as those responsible for the
friction experienced by the particles in motion — the first
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example of a ‘fluctuation—dissipation’ theorem — had far-
reaching consequences for other systems in equilibrium.

Generalizing this idea to other systems was easy and it
became a recurrent theme in Einstein’s papers: in an equili-
brated system under a small perturbation there is balance
between a systematic force and a chaotic fluctuating force.
This is the essence of the fluctuation—dissipation theorem at
equilibrium that was later derived in full generality by Kubo.

This celebrated classical fluctuation—dissipation theorem
can be proved microscopically, with the details of the proof
depending on the dynamics of the system. The theorem is
valid for all dynamical systems in which the Boltzmann distri-
bution is reached at equilibrium. A further extension of the
basic idea occurred as recently as the 1980s when it was real-
ized that, in certain cases, the fluctuation—dissipation theorem
was a consequence of a hidden supersymmetry and time
translation invariance.

When we go out of equilibrium, the formal proof fails, and
new properties and behaviour appear. In some systems, the
departure from equilibrium is substantial and we must resort
to different tools to analyse their behaviour. A good example is
turbulence, where energy is continuously injected into the
system, before cascading from onelength scale to another.

But the situation is different for systems that are only
slightly out of equilibrium. For example, imagine a system that
cannotreach equilibrium because ofhigh free-energy barriers
(that may be of energetic or of entropic nature): this situation
typicallyapplies to disordered systems, such as spin glassesand
structural glasses. Such a system will approach equilibrium
slowly, by jumping from one metastable state to another, and it
could remain slightly out of equilibrium forever if continually
perturbed with a slowly changing external field.

Insuch systems we can expecta separation, by many orders
of magnitude, between the microscopic time scale of the
system (for example, that represented by the vibrations of
individual atoms) and the macroscopic time needed to cross
thebarrier (for example, changes in the structure of the system
itself). The system can then be considered to be essentially
thermalized inside a metastable state, and so fluctuation—
dissipation ideas cansstill be applied: the slowly changing over-
all state of the system is considered to be a small perturbation.

Although a formal analytical solution to such behaviour
hasyettobe found, itis encouraging that much of the off-equi-
librium behaviour of disordered systems can be understood
within a fluctuation—dissipation framework that in some
respects constitutes a generalization of Boltzmann’s equilib-
rium statistical mechanics. These ideas are explored in more
detail for the specific case of glasses in thisissue (page 222). W
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