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Data from thousands of single cells can be tricky to analyse,  
but software advances are making it easier.

SINGLE-CELL SEQUENCING 
MADE SIMPLE

B Y  J E F F R E Y  M .  P E R K E L

Single-cell biology is a hot topic these days. 
And at the cutting edge of the field is 
single-cell RNA sequencing (scRNA-seq). 

Conventional ‘bulk’ methods of RNA 
sequencing (RNA-seq) process hundreds of 
thousands of cells at a time and average out the 
differences. But no two cells are exactly alike, 
and scRNA-seq can reveal the subtle changes 
that make each one unique. It can even reveal 
entirely new cell types.

For instance, after using scRNA-seq to 
probe some 2,400 immune-system cells, Aviv 
Regev of the Broad Institute in Cambridge, 

Massachusetts, and her colleagues came across 
some dendritic cells that had potent T-cell-
stimulating activity (A.-C. Villani et al. Science 
356, eaah4573; 2017). Regev, who is profiled in 
a News Feature on page 24, says that a vaccine 
to stimulate these cells could potentially boost 
the immune system and protect against cancer. 

But such discoveries are hard-won. It’s much 
more difficult to manipulate individual cells 
than large populations, and because each cell 
yields only a tiny amount of RNA, there’s no 
room for error. Another problem is analysing 
the enormous amounts of data that result — not 
least because the tools used can be unintuitive.

Typically, RNA-seq data is analysed by 

laboriously typing commands into a Unix 
operating system. Data files are passed from 
one software package to the next, with each tool 
tackling one step in the process: genome align-
ment, quality control, variant calling and so on. 

The process is complicated. But for bulk 
RNA-seq, at least, a consensus has emerged as 
to which algorithms work best for each step and 
how they should be run. As a result, ‘pipelines’ 
now exist that are, if not exactly plug-and-play, 
at least tractable for non-experts. To analyse dif-
ferences in gene expression, says Aaron Lun, a 
computational biologist at Cancer Research UK 
in Cambridge, bulk RNA-seq is “pretty much a 
solved problem”. 
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The same cannot be said for scRNA-seq: 
researchers are still working out what they can 
do with the data sets and which algorithms are 
the most useful. 

But a range of online resources and tools are 
beginning to ease the process of scRNA-seq 
data analysis. One page at GitHub, called ‘Awe-
some Single Cell’ (go.nature.com/2rmb1hp), 
catalogues more than 70 tools and resources, 
covering every step of the analysis process. The 
field has spawned a cottage industry of compu-
tational-biology tools, says Cole Trapnell, a biol-
ogist at the University of Washington in Seattle.

BESPOKE TECHNIQUES
Lana Garmire, a bioinformatician at the Uni-
versity of Hawaii in Honolulu, laid out the basic 
steps of scRNA-seq data analysis (and some 
48 tools to perform them) in a review published 
last year (O. B. Poirion et al. Front. Genet. 7, 163; 
2016). Although each experiment is unique, she 
says, most analysis pipelines follow the same 
steps to clean up and filter the sequencing data, 
work out which transcripts are expressed and 
correct for differences in amplification effi-
ciency. Researchers then run one or more sec-
ondary analyses to detect subpopulations and 
other functions.

In many cases, says Christina Kendziorski, 
a biostatistician at the University of Wiscon-
sin–Madison, the tools used in bulk RNA-seq 
can be applied to scRNA-seq. But fundamen-
tal differences in the data mean that this is not 
always possible. For one thing, single-cell data 
are noisier, says Lun. With so little RNA to work 
with, small changes in amplification and capture 
efficiencies can produce large differences from 
cell to cell and day to day that have nothing to 
do with biology. Researchers must therefore be 
vigilant for ‘batch effects’, in which seemingly 
identical cells prepared on different days differ 
for purely technical reasons, and for ‘dropouts’ 
— genes that are expressed in the cell but not 
picked up in the sequence data. 

Another challenge is the scale, says Joshua 
Ho, a bioinformatician at the Victor Chang 
Cardiac Research Institute in Sydney, Australia. 
A typical bulk RNA-seq experiment involves a 
handful of samples, but scRNA-seq studies 
can involve thousands. Tools that can handle a 
dozen samples often slow to a crawl when con-
fronted with ten or a hundred times as many. 
(Ho’s Falco software taps on-demand cloud-
computing resources to address that problem.)

Even the seemingly simple question of 
what constitutes a good cell preparation is 
complicated in the world of scRNA-seq. Lun’s 
workflow assumes that most of the cells have 
approximately equivalent RNA abundances. 
But “that assumption isn’t necessarily true”, 
he says. For instance, he says, naive T cells, 
which have never been activated by an anti-
gen and are relatively quiescent, tend to have 
less messenger RNA than other immune 
cells and could end up being removed dur-
ing analysis because a program thinks there 

is insufficient RNA for processing.
Perhaps most significantly, researchers per-

forming scRNA-seq tend to ask different ques-
tions from those analysing bulk RNA. Bulk 
analyses typically investigate how gene expres-
sion differs between two or more treatment 
conditions. But researchers working with single 
cells are often aiming to identify new cell types 
or states or reconstruct developmental cellular 
pathways. “Because the aims are different, that 
necessarily requires a different set of tools to 
analyse the data,” says Lun.

One common type of single-cell analysis, 
for instance, is dimensionality reduction. This 
process simplifies data sets to facilitate the 
identification of similar cells. According to 
Martin Hemberg, a computational biologist at 
the Wellcome Trust Sanger Institute in Cam-
bridge, UK, scRNA-seq data represent each 
cell as “a list of 20,000 gene-expression values”. 
Dimensionality-reduction algorithms such 
as principal component analysis (PCA) and 
t-distributed stochastic neighbour embedding 
(t-SNE) effectively project those shapes into two 
or three dimensions, making clusters of similar 
cells apparent. Another popular application is 
pseudo-time analysis. Trapnell developed the 
first such tool, called Monocle, in 2014. The 
software uses machine learning to infer from an 
scRNA-seq experiment the sequence of gene-
expression changes that accompany cellular 
differentiation, much like inferring the path of 
a foot race by photographing the runners from 
the air, Trapnell says. 

Other tools address subpopulation detection 
(for instance, Pagoda, from Peter Kharchenko 
at Harvard Medical School in Boston, Massa-
chusetts) and spatial positioning, which uses 
data on the distribution of gene expression in 
tissues to determine where in a tissue each tran-
scriptome arose. Rahul Satija of the New York 
Genome Center in New York City, who devel-
oped one such tool, Seurat, as a postdoc with 
Regev, says that the software uses these data 
to position cells as points in 3D space. “That’s 
why we named the package Seurat,” he explains, 
“because the dots reminded us of points on a 
pointillist painting.” 

Although targeted to specific tasks, these 
tools often address multiple functions. Seurat, 
for instance, powered the cell-subpopulation 
analysis Regev’s team performed to identify new 
classes of immune cells. 

Most scRNA-seq tools exist as Unix programs 
or packages in the programming language R. 
But relatively few biologists are comfortable 
working in those environments, says Gene Yeo, 
a bioinformatician at the University of Califor-
nia, San Diego. Even if they are, they may lack 
the time required to download and configure 
everything to make such tools work. 

Some ready-to-use pipelines have been devel-
oped. And there are end-to-end graphical tools 
too, including the commercial SeqGeq package 
from FlowJo, as well as a pair of open-source 
web tools: Granatum from Garmire’s group, 
and ASAP (the Automated Single-cell Analysis 
Pipeline) from the lab of Bart Deplancke, a bio-
engineer at the Swiss Federal Institute of Tech-
nology in Lausanne. 

ASAP and Granatum use a web browser to 
provide relatively simple, interactive workflows 
that allow researchers to explore their data 
graphically. Users upload their data and the 
software walks them through the steps one by 
one. For ASAP, that means taking data through 
preprocessing, visualization, clustering and dif-
ferential gene-expression analysis; Granatum 
allows pseudo-time analyses and the integration 
of protein-interaction data as well.

According to both Garmire and Deplancke, 
ASAP and Granatum were designed to allow 
researchers and computational biologists to 
work together. Researchers “used to think of 
[bioinformaticians] as magical creatures who 
just get the data and magically generate the 
result”, says Xun Zhu, a PhD student at the 
University of Hawaii at Manoa, and lead devel-
oper on Granatum. “Now they can participate a 
little bit in terms of tuning the parameters. And 
that’s a good thing.”

APPROACH WITH CAUTION
The tools aren’t perfect for every situation, of 
course. A pipeline that excels at identifying cell 
types, for instance, might stumble with pseudo-
time analysis. Plus, appropriate methods 
are “very data-set dependent”, says Sandrine 
Dudoit, a biostatistician at the University of 
California, Berkeley. The methods and tuning 
parameters may need to be adjusted to account 
for variables such as sequencing length. But 
John Marioni at Cancer Research UK in Cam-
bridge says it’s important not to put complete 
faith in the pipeline. “Just because the satellite 
navigation tells you to drive into the river, you 
don’t drive into the river,” he says. 

For beginners, caution is warranted. Bio-
informatics tools can almost always yield an 
answer; the question is, does that answer mean 
anything? Dudoit’s advice is do some explora-
tory analysis, and verify that the assumptions 
underlying your chosen algorithms make sense. 

Some analytical tasks still remain challeng-
ing, says Satija, including comparing data sets 
across experimental conditions or organisms 
and integrating data from different ’omics. (A 
planned update to Seurat should address the 
former issue, he notes.) 

But enough tools exist to keep most research-
ers occupied. Kendziorski suggests that people 
who are interested just dive in. Each new tool can 
unveil another facet of biology; just keep your eyes 
on the science, and be judicious in your choice. ■

Jeffrey M. Perkel is the technology editor for 
Nature.
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