
Save time and protect critical code with ‘continuous integration’ services.

COLLABORATIVE SOFTWARE 
DEVELOPMENT MADE EASY

B Y  A N D R E W  S I LV E R

Sebastian Neubert, a particle physicist at 
Heidelberg University in Germany, leads 
a group studying subatomic particles 

called pentaquarks. The six team members all 
have access to the software code used to run 
their multi-step analyses, and the program-
mers update it daily with new features and bug 
fixes. With each code change, however, they 
run the risk of introducing inadvertent errors 
that foul the underlying algorithms.

To prevent that, the team checks and 
rechecks the analyses, and uses error-
checking algorithms, functions they can call 
whenever a change is proposed, to ensure that 

their software works as intended. One test, 
for example, verifies that a noise-cancelling 
algorithm gives the correct output when it is 
run on practice data.

In 2015, in an effort to save time and 
resources, the team took inspiration from the 
technology industry, automating their testing 
using a process called ‘continuous integration’. 

In continuous integration, changes to 
software code automatically trigger repetitive 
tasks, such as error-checking. Fundamentally, 
the process simplifies a task that diligent coders 
already perform. Programmers usually write 
lists of tests that they will run periodically to 
ensure that their code still works, just as Neu-
bert’s team do. But a busy team might forget 

or lack the time to run them, allowing errors 
to creep in. Continuous integration automates 
that process so those checks run whenever a 
change is proposed, saving team members the 
time they would spend hunting down an error. 
A team running genomic analyses could spend 
more time at the bench, while a group develop-
ing climate-prediction software could better 
refine its models. That said, the resulting peace 
of mind is only as good as the tests themselves: 
a poorly designed test can still allow mistakes 
to pass undetected. 

The process is common in the commercial 
and open-source sectors. A study presented 
at the 2016 IEEE/ACM International Confer-
ence on Automated Software Engineering 
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in Singapore found that about 40% of the 
34,544 most-popular open-source projects 
hosted on the coding collaboration site GitHub 
used continuous integration in some form.

Only a few of those open-source projects 
might be considered scientific software, but 
an increasing number of scientists are looking 
to continuous integration to automate all sorts 
of time-consuming tasks, from testing code to 
updating documents with the latest data. 

Researchers at institutions such as CERN, 
Europe’s particle-accelerator laboratory near 
Geneva, Switzerland; the Pacific Northwest 
National Laboratory in Richland, Washing-
ton; and the Ontario Institute for Cancer 
Research in Toronto, Canada, have embraced 
the practice, but adoption in the scientific  
sector remains relatively sparse. 

For Neubert, continuous integration 
ensures that the pipeline’s behaviour remains 
correct and consistent as his team refines its 
code, providing an “incredibly valuable” safe-
guard. “There is a real danger of just missing 
something or making a slight mistake,” he says.

EXCEPTIONS
A variety of continuous integration services 
exist. These include the open-source Drone, 
and commercial options such as CircleCI, 
Codeship, GitLab, Shippable and Travis CI, 
all of which offer pricing tiers based on the 
desired testing behaviour, number of users 
and whether the project is public or private. 
Travis CI, for instance, is free for open-source 
projects; private projects cost from US$69 per 
month. Shippable offers a free basic service for 
public projects, but charges $25–150 per month 
for support for private projects and greater  
computing power, among other features. 

Researchers should consider what is a 
suitable and worthwhile investment, however. 
Not every project needs continuous integration 
and setting up and configuring a service can 
be challenging. Further difficulties can arise 
if the services need to interact with software 
or data with legal restrictions on its use, says 
Daniel Himmelstein, a data-science postdoc at 
the University of Pennsylvania in Philadelphia. 

Also, code is often used only once, making 
the cost even less worthwhile. “For day-to-day 
research coding, the amount of code is not large 
enough to make continuous integration valu-
able,” says Andrea Zonca, a specialist in high-
performance computing at the University of 
California, San Diego. He uses Travis CI when 
publishing code, but most that he writes is for 
his own one-time use and is not executed again. 

Computing costs can also mount if code is 
being constantly updated and requires repeated 
testing, which is why Neubert’s lab only tests its 
most critical data analyses after code changes.

Despite these challenges, continuous 
integration services tend to improve code 
quality, says Björn Grüning, a bioinformati-
cian at the University of Freiburg in Germany, 
especially on large projects such as Galaxy, a  

bioinformatics toolkit that Grüning, along with 
about 160 others, contributes to.

According to Grüning, continuous 
integration has shortened the turnaround 
time for approving contributions to the Galaxy 
project and given programmers more confi-
dence when submitting new features and fixes. 
Before these services were available, it was often 
impractical for researchers in such projects to 
test every new feature collaborators proposed 
because they didn’t have the time, he says. 

Some researchers use continuous integration 
to automate non-programming tasks. In April, 
as part of a project studying how ecosystems 

change over time, 
Ethan White,  an 
ecologist at the Uni-
versity of Florida in 
Gainesville, helped to 
configure Travis CI 
to update tables and 
plots automatically 

with new field or weather-station data, saving 
the research team up to 5 hours a month. 

Continuous integration helps Himmelstein 
automate revisions to scientific papers, cita-
tions and web pages following text or code 
updates. Without continuous integration, he 
says, human maintainers would probably “get 
lazy and update the manuscript less frequently 
than every change”.

INITIALIZING
Whether hosted externally by a third party or 
on a user’s own machine, the continuous inte-
gration service is controlled with a custom set 
of instructions. This configuration file defines 
the tasks to be run and sets up the server with 
the correct environment — the operating sys-
tem and software libraries — required to run 
them. The service then executes those instruc-
tions at set times or on receipt of a code or data 
update.

University of Pennsylvania bioinformatician 
Casey Greene, who uses continuous integra-
tion to rerun his data analyses, has tested many 
of today’s most popular services. “The good 
news about all of these services is that they’re 
quite similar,” he says. 

Subtle differences do exist, for instance in 
the number of concurrent jobs users can run, 
or the amount of computing power available 
to run them. “I’d encourage people to dig into 
the limits of each service to make sure they 
are compatible with their workflows,” advises 
Greene. 

Although continuous integration adoption 
in science right now is small, it is growing, 
and more researchers should get on board, 
Greene says. Getting up to speed takes time, 
he acknowledges, but often, the effort is worth 
the reward. “Scientists analysing data should 
have it in their toolbox.” ■

Andrew Silver is a science and technology 
writer in London.

Nature’s technology editor, Jeffrey 
Perkel, started blogging about workplace 
technology in science on the Naturejobs 
website in 2016. Here are some highlights.

From stadiums to genomes
Most bioinformaticians are either biologists 
skilled in programming or programmers 
with an interest in biology. Mike Goodstadt, 
the programmer behind the 3D genome-
visualization tool TADkit, took a different 
approach. In the early-to-mid 1990s, 
Goodstadt was a student at the University of 
Bath, UK. His course of study? Architecture, 
with an emphasis on 3D modelling. After 
graduation, he helped to design and build 
a 61,500-seat stadium. But a faltering 
economy and newly acquired programming 
skills helped to steer him towards biology.
go.nature.com/2yaweu8

Lorena Barba, reproducibility champion
Lorena Barba, a mechanical and aerospace 
engineer at George Washington University 
in Washington DC, has long championed 
research reproducibility. “I’ve always 
believed that the open-source model is 
ideal for science, as it exposes the complete 
sequence of steps that produces a given 
result,” she says. In January, she travelled 
to Chile to run a week-long course on 
reproducible research computing. The 
month before, she had been awarded 
a 2016 Leamer-Rosenthal Prize, which 
celebrates those “working to forward the 
values of openness and transparency in 
research”. In this Q&A, she talks flying 
snakes, ‘repro-packs’ and copyright.
go.nature.com/2y2vacg

The sound of DNA
With an alphabet comprising just four 
letters, a DNA sequence isn’t much to look 
at. So when sequence-analysis tools want 
to highlight key elements, they typically do 
so using colour or font, or by overlaying 
other types of information. In the not-too-
distant future, there may be another option. 
Molecular biologist and part-time drummer 
Mark Temple at Western Sydney University, 
Australia, describes DNA sonification, “an 
auditory display tool” for DNA: sequence 
in, audio out. “I’m not saying audio by itself 
is the bees’ knees for interpreting DNA 
sequence,” Temple says, “but surely audio 
can contribute to your visual interpretation.”
go.nature.com/2fadzxi

Toolbox in the 
blogosphere

“Continuous 
integration has 
shortened the 
turnaround time 
for approving 
contributions.”
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