
Save time and protect critical code with ‘continuous integration’ services.

COLLABORATIVE SOFTWARE
DEVELOPMENT MADE EASY

B Y A N D R E W S I LV E R

Sebastian Neubert, a particle physicist at
Heidelberg University in Germany, leads
a group studying subatomic particles

called pentaquarks. The six team members all
have access to the software code used to run
their multi-step analyses, and the program-
mers update it daily with new features and bug
fixes. With each code change, however, they
run the risk of introducing inadvertent errors
that foul the underlying algorithms.

To prevent that, the team checks and
rechecks the analyses, and uses error-
checking algorithms, functions they can call
whenever a change is proposed, to ensure that

their software works as intended. One test,
for example, verifies that a noise-cancelling
algorithm gives the correct output when it is
run on practice data.

In 2015, in an effort to save time and
resources, the team took inspiration from the
technology industry, automating their testing
using a process called ‘continuous integration’.

In continuous integration, changes to
software code automatically trigger repetitive
tasks, such as error-checking. Fundamentally,
the process simplifies a task that diligent coders
already perform. Programmers usually write
lists of tests that they will run periodically to
ensure that their code still works, just as Neu-
bert’s team do. But a busy team might forget

or lack the time to run them, allowing errors
to creep in. Continuous integration automates
that process so those checks run whenever a
change is proposed, saving team members the
time they would spend hunting down an error.
A team running genomic analyses could spend
more time at the bench, while a group develop-
ing climate-prediction software could better
refine its models. That said, the resulting peace
of mind is only as good as the tests themselves:
a poorly designed test can still allow mistakes
to pass undetected.

The process is common in the commercial
and open-source sectors. A study presented
at the 2016 IEEE/ACM International Confer-
ence on Automated Software Engineering

IL
LU

ST
R

AT
IO

N
S

 B
Y

TH
E

P
R

O
JE

C
T

TW
IN

S

5 O C T O B E R 2 0 1 7 | V O L 5 5 0 | N A T U R E | 1 4 3

TOOLBOX

©

2017

Macmillan

Publishers

Limited,

part

of

Springer

Nature.

All

rights

reserved.

in Singapore found that about 40% of the
34,544 most-popular open-source projects
hosted on the coding collaboration site GitHub
used continuous integration in some form.

Only a few of those open-source projects
might be considered scientific software, but
an increasing number of scientists are looking
to continuous integration to automate all sorts
of time-consuming tasks, from testing code to
updating documents with the latest data.

Researchers at institutions such as CERN,
Europe’s particle-accelerator laboratory near
Geneva, Switzerland; the Pacific Northwest
National Laboratory in Richland, Washing-
ton; and the Ontario Institute for Cancer
Research in Toronto, Canada, have embraced
the practice, but adoption in the scientific
sector remains relatively sparse.

For Neubert, continuous integration
ensures that the pipeline’s behaviour remains
correct and consistent as his team refines its
code, providing an “incredibly valuable” safe-
guard. “There is a real danger of just missing
something or making a slight mistake,” he says.

EXCEPTIONS
A variety of continuous integration services
exist. These include the open-source Drone,
and commercial options such as CircleCI,
Codeship, GitLab, Shippable and Travis CI,
all of which offer pricing tiers based on the
desired testing behaviour, number of users
and whether the project is public or private.
Travis CI, for instance, is free for open-source
projects; private projects cost from US$69 per
month. Shippable offers a free basic service for
public projects, but charges $25–150 per month
for support for private projects and greater
computing power, among other features.

Researchers should consider what is a
suitable and worthwhile investment, however.
Not every project needs continuous integration
and setting up and configuring a service can
be challenging. Further difficulties can arise
if the services need to interact with software
or data with legal restrictions on its use, says
Daniel Himmelstein, a data-science postdoc at
the University of Pennsylvania in Philadelphia.

Also, code is often used only once, making
the cost even less worthwhile. “For day-to-day
research coding, the amount of code is not large
enough to make continuous integration valu-
able,” says Andrea Zonca, a specialist in high-
performance computing at the University of
California, San Diego. He uses Travis CI when
publishing code, but most that he writes is for
his own one-time use and is not executed again.

Computing costs can also mount if code is
being constantly updated and requires repeated
testing, which is why Neubert’s lab only tests its
most critical data analyses after code changes.

Despite these challenges, continuous
integration services tend to improve code
quality, says Björn Grüning, a bioinformati-
cian at the University of Freiburg in Germany,
especially on large projects such as Galaxy, a

bioinformatics toolkit that Grüning, along with
about 160 others, contributes to.

According to Grüning, continuous
integration has shortened the turnaround
time for approving contributions to the Galaxy
project and given programmers more confi-
dence when submitting new features and fixes.
Before these services were available, it was often
impractical for researchers in such projects to
test every new feature collaborators proposed
because they didn’t have the time, he says.

Some researchers use continuous integration
to automate non-programming tasks. In April,
as part of a project studying how ecosystems

change over time,
Ethan White, an
ecologist at the Uni-
versity of Florida in
Gainesville, helped to
configure Travis CI
to update tables and
plots automatically

with new field or weather-station data, saving
the research team up to 5 hours a month.

Continuous integration helps Himmelstein
automate revisions to scientific papers, cita-
tions and web pages following text or code
updates. Without continuous integration, he
says, human maintainers would probably “get
lazy and update the manuscript less frequently
than every change”.

INITIALIZING
Whether hosted externally by a third party or
on a user’s own machine, the continuous inte-
gration service is controlled with a custom set
of instructions. This configuration file defines
the tasks to be run and sets up the server with
the correct environment — the operating sys-
tem and software libraries — required to run
them. The service then executes those instruc-
tions at set times or on receipt of a code or data
update.

University of Pennsylvania bioinformatician
Casey Greene, who uses continuous integra-
tion to rerun his data analyses, has tested many
of today’s most popular services. “The good
news about all of these services is that they’re
quite similar,” he says.

Subtle differences do exist, for instance in
the number of concurrent jobs users can run,
or the amount of computing power available
to run them. “I’d encourage people to dig into
the limits of each service to make sure they
are compatible with their workflows,” advises
Greene.

Although continuous integration adoption
in science right now is small, it is growing,
and more researchers should get on board,
Greene says. Getting up to speed takes time,
he acknowledges, but often, the effort is worth
the reward. “Scientists analysing data should
have it in their toolbox.” ■

Andrew Silver is a science and technology
writer in London.

Nature’s technology editor, Jeffrey
Perkel, started blogging about workplace
technology in science on the Naturejobs
website in 2016. Here are some highlights.

From stadiums to genomes
Most bioinformaticians are either biologists
skilled in programming or programmers
with an interest in biology. Mike Goodstadt,
the programmer behind the 3D genome-
visualization tool TADkit, took a different
approach. In the early-to-mid 1990s,
Goodstadt was a student at the University of
Bath, UK. His course of study? Architecture,
with an emphasis on 3D modelling. After
graduation, he helped to design and build
a 61,500-seat stadium. But a faltering
economy and newly acquired programming
skills helped to steer him towards biology.
go.nature.com/2yaweu8

Lorena Barba, reproducibility champion
Lorena Barba, a mechanical and aerospace
engineer at George Washington University
in Washington DC, has long championed
research reproducibility. “I’ve always
believed that the open-source model is
ideal for science, as it exposes the complete
sequence of steps that produces a given
result,” she says. In January, she travelled
to Chile to run a week-long course on
reproducible research computing. The
month before, she had been awarded
a 2016 Leamer-Rosenthal Prize, which
celebrates those “working to forward the
values of openness and transparency in
research”. In this Q&A, she talks flying
snakes, ‘repro-packs’ and copyright.
go.nature.com/2y2vacg

The sound of DNA
With an alphabet comprising just four
letters, a DNA sequence isn’t much to look
at. So when sequence-analysis tools want
to highlight key elements, they typically do
so using colour or font, or by overlaying
other types of information. In the not-too-
distant future, there may be another option.
Molecular biologist and part-time drummer
Mark Temple at Western Sydney University,
Australia, describes DNA sonification, “an
auditory display tool” for DNA: sequence
in, audio out. “I’m not saying audio by itself
is the bees’ knees for interpreting DNA
sequence,” Temple says, “but surely audio
can contribute to your visual interpretation.”
go.nature.com/2fadzxi

Toolbox in the
blogosphere

“Continuous
integration has
shortened the
turnaround time
for approving
contributions.”

1 4 4 | N A T U R E | V O L 5 5 0 | 5 O C T O B E R 2 0 1 7

TOOLBOX

©

2017

Macmillan

Publishers

Limited,

part

of

Springer

Nature.

All

rights

reserved.

