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Abstract
Elucidation of the systems biology foundation underlying the effect of Fangji, which are multi-herbal traditional Chinese medicine 
(TCM) formulas, is one of the major aims in the field. The numerous bioactive ingredients of a Fangji deal with the multiple targets of 
a complex disease, which is influenced by a number of genes and their interactions with the environment. Genome-wide association 
study (GWAS) is an unbiased approach for dissecting the genetic variants underlying complex diseases and individual response to a 
given treatment. GWAS has great potential for the study of systems biology from the point of view of genomics, but the capacity using 
current analysis models is largely handicapped, as evidenced by missing heritability. Recent development of a full genetic model, 
in which gene-gene interactions (dominance and epistasis) and gene-environment interactions are all considered, has addressed 
these problems. This approach has been demonstrated to substantially increase model power, remarkably improving the detection 
of association of GWAS and the construction of the molecular architecture. This analysis does not require a very large sample size, 
which is often difficult to meet for a GWAS of treatment response. Furthermore, this analysis can integrate other omic information and 
allow for variations of Fangji, which is very promising for Fangjiomic study and detection of the sophisticated molecular architecture 
of the function of Fangji, as well as for the delineation of the systems biology of personalized medicine in TCM in an unbiased and 
comprehensive manner.
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Introduction
One of the biggest challenges in current medicine is the 
difficulty in preventing and treating a large number of chronic 
and complex diseases, such as diabetes, cardiovascular 
and cerebrovascular diseases, cancer, and Alzheimer's 
disease[1].  It has been widely demonstrated that the etiology 
of complex diseases is the result of a combination of multiple 
environmental and genetic factors[2]; thus, limited clinical 
outcomes may arise from intervention with one target 
among the complicated network of the disease.  The need 
to apply multi-target combination therapeutic strategy has 
been increasingly recognized[3].  On the other hand, with the 

advance of genomics technology, precision medicine in recent 
years has aimed to achieve personalized treatment based on 
each individual’s genetic disposition, which circumscribes the 
differing response to treatment[4].  Interestingly, traditional 
Chinese medicine (TCM) systematically examines the 
symptoms of the disease throughout the whole body, identifies 
the patterns or models of disease syndromes (Zheng), and 
prescribes a corresponding Fangji consisting of multiple herbs 
to individually treat patients.  Therefore, Fangji are not only 
multi-targeted but are also used for personalized medicine, 
which has unique research and clinical value.  The advances in 
high-throughput genomic and other omics technology provide 
powerful tools for investigating the systems biology of the 
multi-targeted and personalized nature of Fangji[5].

Complex diseases, as complex or quantitative traits, are 
determined by many genes, most of which have small effects, 
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and their interactions or interaction with the environment[6].  
The contributing genes are called quantitative trait genes.  
The tremendously high diversity of genetic variation and its 
interaction with the environment contributes to the difference 
in pathogenesis and development of diseases[7] and lays the 
foundation for the variety of patterns of TCM syndromes (or 
Zheng) of the disease, as well as the corresponding personal-
ized treatment.  Fangji typically consist of a number of herbs, 
according to the principles of Monarch, Minister, Assistant 
and Guide (Jun, Chen, Zuo and Shi) and other characteristics 
of compatibility.  Each constituent herb usually contains hun-
dreds or thousands of different compounds[8].  The overall 
efficacy is only infrequently accounted for by one or a small 
number of compounds.  Rather, it is a synergy of various low-
concentration, small-effect compounds, together with few 
enriched and active compounds.  A Fangji, or its many small-
effect active compounds, acts on the signaling systems con-
trolled by many small-effect genes, modifying the molecular 
architecture susceptible to diseases, which may underlie the 
basis of the systems biology of personalized treatment with 
Fangji.  Therefore, we can infer the particular molecular archi-
tecture that mediates the personalized medicine of Fangji by 
dissecting the genetic variants influencing the likelihood of 
response to Fangji, which can be implemented with genome-
wide association studies (GWAS) and/or integrated with 
other omic approaches.

GWAS and full genetic model
The success and problems of GWAS
Based on the completion of human genome sequencing and 
the development of high-throughput genotyping techniques, 
GWAS analysis of complex diseases at the genome level com-
prehensively reveals the genetic factors and the network for 
pathogenesis and development of disease and drug response[9].  
In a typical GWAS, each individual’s whole genome is ana-
lyzed by using millions of single nucleotide polymorphisms 
(SNPs) as molecular genetic markers, and the genetic vari-
ants are associated with variations in the complex traits of 
interest in the population[10].  Human complex traits include 
physiological traits such as height and body weight, as well as 
disease traits such as hypertension and glaucoma, which are 
determined by a variety of genes, their environment, and their 
interactions[11-13].  Complex diseases, TCM Zheng, and response 
to drugs are all complex traits and can be studied using the 
GWAS approach.  In 2005, the first important GWAS study 
reported age-related retinal macular degeneration[14].  Since 
then, findings from GWAS research have rapidly increased for 
different diseases, including cancer, diabetes, autism, systemic 
lupus erythematosus, psoriasis and response to drugs[15, 16].  
As of June 2017, nearly 3000 studies reported approximately  
37 000 associations with 31 500 SNPs (http://www.ebi.ac.uk/
gwas/home).  As with other phenotypes, GWAS can directly 
associate different TCM phenotypes such as Zheng, constitu-
ent, or response to Fangji with genome-wide genetic variabil-
ity and are powerful for resolving the molecular basis of TCM-
related phenotypes.  This analysis represents an unbiased 

investigation of the molecular substrates associated with the 
phenotype and thus does not require any assumptions about 
the mechanism, anatomy and physiology of the traits studied, 
which is particularly important and useful for TCM-related 
phenotypic studies because many of them are not clear.  

Over the last few decades, GWAS analysis has revealed 
several important characteristics.  The vast majority of associa-
tions were not located in the coding region of the functional 
protein, implicating that most of the associated variants were 
in regulatory loci[17, 18]; additionally, each associated variant 
makes only a very small contribution to the disease pheno-
type[19, 20].  These led to the conclusion that it is not the variants 
of the functional or core genes but the large number of low-
contribution regulatory or peripheral genes that constitute the 
genetic network for complex disease[21].  This conclusion may 
need to be addressed for the simplistic precision medicine 
model, in which only one or a few number of signaling path-
ways are considered.  Although GWAS has achieved great 
success, current GWAS still have significant limitations.  One 
of the major limitations is so-called missing heritability[22-24].  
GWAS has been expected to detect a large amount of asso-
ciation, as high-resolution genetic markers have been used 
in GWAS.  However, for most disease phenotypes, the total 
heritability from association discovered by GWAS is very low, 
and thus the majority of associations cannot be detected[25, 26].  
For example, based on pedigree studies, human height is 80% 
genetically determined.  Up to now, approximately 50 SNPs 
associated with human height have been detected, together 
accounting for only 5% of height variation.  This result can be 
partly ascribed to disease heterogeneity, rare variation, epi-
genetics, etc[27].  An important reason, however, is that the cur-
rent model for association analysis is insufficient.

The full genetic model of GWAS
According to the principle of genetics, the gene effect consists 
of an additive effect, a dominance effect and an epistatic effect.  
For the additive effect, each gene acts independently.  For the 
dominance and epistatic effects, there is genetic interaction 
between alleles and between non-alleles, respectively.  
However, the existing GWAS analysis essentially analyzes 
only additive effects, failing to discover gene-gene and gene-
environment interactions[28, 29].  As these interactions play 
important roles in determining complex traits, inadequate 
consideration of these interactions by the current GWAS 
analysis significantly underestimates associations[30-32].  To 
address this, a novel mixed-liner GWAS analysis model 
considering various interactions has been developed and 
implemented[33].  This model has been applied for re-analysis 
of some GWAS data for complex traits, including human 
alcohol dependence, cholesterol level, body mass index, 
coronary heart disease, mouse anxiety-like behavior, crops, 
etc[33-36].  The results have demonstrated that, in addition to 
replicating associations reported previously, an appreciable 
number of new associations have also been detected, 
particularly in dominance or epistatic mode.  Subsequently, 
the molecular architecture of those associated genes detected 
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has been constructed.  For example, alcoholism, or alcohol 
dependence, is a complex disease that is approximately 50% 
genetically determined[37, 38].  However, until now, even though 
dozens of GWAS on alcoholism have been performed, only 
low heritability has been discovered using the conventional 
GWAS, less than 1%[39].  Chen et al[29] reanalyzed the dataset 
from 3838 subjects to discover quantitative traits of alcohol 
dependence symptom count (ADSC), considering additive, 
dominance, and epistatic effects and their interactions with 
the environment.  This reanalysis detected 20 quantitative 
trait SNPs associated with ADSC.  Five associations have been 
previously reported from different studies.  Additionally, the 
analysis revealed that the replicated association with the gene 
ADH1C was highly significant in a dominance inheritance 
mode and was predicted to increase the risk of ADSC at a 
considerably high level.  Interestingly, an environmental 
factor, co-morbidity of substance dependence, also influenced 
the impact of the ADH1C  variant on ADSC, dependent 
on the type of the substance dependence: only co-morbid 
opiate or marijuana dependence, but not nicotine or cocaine, 
showed the effect, indicating the complexity of the gene-
environment interaction.  Fifteen new associations have also 
been identified in variants, including four novel genes, two 
non-coding RNA and two epistasis loci.  Two SNPs interacted 
in an additive × additive or additive ×dominance  manner, 
with one within a gene, PTPRG, encoding a protein tyrosine 
phosphatase (PTP), the other one near a gene, ANGPT1, 
encoding a PTP receptor, supporting the validity of the 
model for estimation of the epistatic effect.  Both ADH1C and 
ANGPT1 have been found to be significantly or nominally 
associated with alcohol dependence[40-42], and other family 
members of PTP are associated with the disorder[43].  From the 
results of the reanalysis, over 20 percent of total heritability 
was detected, much closer to the results from family and twin 
studies; dominance and epistatic effects accounted for over 
50 percent of the total estimated heritability.  In contrast, in 
the first paper on GWAS using conventional analysis of the 
same dataset, no association reached genome-wide significant 
level[44].  To make the comparison more straightforward, 
GWAS of human total cholesterol level was carried out using 
a conventional single locus additive approach, including 
PLINK analysis and GCTA analysis.  Only two and one 
significant association, respectively, reached genome-wide 
association level.  Use of the full model, however, discovered 
15 significant associations, and the dominance and epistatic 
effects accounted for approximately 60% of total heritability.  
Finally, simulations analysis further supported the validity 
of the full model[35].  In sum, the full genetic model has 
been demonstrated to improve the unbiased detection of a 
significant number of GWAS associations and has remarkably 
resolved the problem of missing heritability.

The full model can analyze not only the association from 
the sole dataset of genome but also from integrated data of 
multiple omics, including genome, transcriptome, proteome, 
metabolome, etc, to systematically identify the biological infor-
mation flow of specific molecular architecture that influences 

the phenotype of interest[33].  Therefore, use of the full genetic 
model makes it plausible to comprehensively and systemati-
cally dissect how molecular structure, influenced by numer-
ous small-effect genetic variability, is disturbed by the action 
of the environment or stress to govern the eventual occurrence 
of variations in the physiological phenotype, disease, TCM 
syndromes and drug response, thus offering comparatively 
high practical value in different fields, including Fangji study 
(Figure 1).

Perspective on the application of full genetic model 
GWAS to Fangjiomics
Identification of genetic factors underlying individual 
difference in response to drug treatment is key for precision 
medicine[45, 46].  Paradoxically, GWAS of drug response, 
including adverse reactions to a drug, composes less than 
10% of the total number of published GWAS reports and 
has achieved genome-wide significant association with less 
than 300 SNPs, averaging 2 or less per study[47, 48].  Despite 
this limitation, these studies have still provided valuable 
information on the mechanisms underlying drug distribution, 
efficacy and toxicology[49-51].  For example, hepatic CYP2C19 
enzyme, a CYP450 superfamily member, regulates the 
metabolism of many drugs, including antidepressants[52, 53], 
and their genetic variants were detected to have a significant 
effect on the choice of appropriate types and doses of clinical 
anticoagulants.  Studies have also revealed the marked effects 
of ethnicity on drug response and toxicology[54-56].

To reveal the mechanisms and factors that influence the 
effects of Fangji, GWAS is needed for unbiased identification of 
the complicated underlying molecular architecture.  Currently, 
no GWAS regarding Fangji have been reported.  Even for 
GWAS of conventional drug response, the number of the 
studies is still relatively limited, partly due to the requirement 
of the large sample size for detection of a considerable number 
of associations using the conventional GWAS approach, which 
is more difficult for drug response studies[48].  As mentioned 
above, this obstacle may be at least partly overcome by using 
full genetic model analysis, by which an appreciable number 
of significant associations can be disclosed so that molecular 
architecture for Fangji’s action can be constructed without 
a very large sample size[29].  Based on the full genetic model 
GWAS analysis, it is possible to reveal the systems biology 
governing the distribution and pharmacodynamics of Fangji, 
as well as the associated genes and network of efficacy or 
side effects of Fangji[33].  Additionally, the full genetic model 
also offers more flexibility by allowing certain variations 
in Fangji in the model.  This is very important, as in the 
clinical practice of TCM, there are constant changes in the 
composition of a given Fangji, called addition and subtraction, 
as well as changes in doses or frequency to individually 
treat the patients.  In the full genetic model analysis, these 
changes in Fangji can all be used as covariates to reveal their 
involvement in the molecular and phenotypical impacts of 
Fangji.  Furthermore, the full genetic model is also capable 
of dissecting the molecular architecture of the therapeutic 
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Figure 1.  Dissection of the molecular architecture of Fangjiomics using the full genetic analysis of genome-wide association study.  (A) The multi-
herbal Fangji and the rule of compatibility.  Each herb consists of thousands of compounds, some of which have very small effects by themselves and 
collectively treat the disease.  (B) The molecular architecture for individual difference in response to Fangji can be examined using the GWAS approach 
with full genetic analysis, in which dominance and epistatic (genetic interaction between alleles and non-alleles, respectively) effects are included.  
(C) The full genetic model analysis of GWAS is able to identify the efficacy or side effects of Fangji, with the variations of doses or herbal constituents 
considered.  The analysis can also integrate other omic information, such as transcriptome or proteome, powerfully deciphering the systems biology of 
the personalized medicine of Traditional Chinese Medicine using Fangji.  (D) The analysis can detect a large number of associated SNPs and genes, and 
the molecular architecture underlying Fangji’s effect can be constructed. 

or adverse effects of variable constituents or compounds of 
Fangji, or Fangjiomics, by using high-efficient phytochemical 
isolation and identification technology (Figure 1).

In conclusion, understanding the genetic networks and 
molecular architecture of Fangji remains a main challenge in 
the field.  Recent progress in GWAS has proven very successful 
for unbiased dissection of new genetic underpinnings of 
different diseases, physiological traits and drug responses, 
although marked limitations in missing heritability have 
handicapped the capability to detect associations, partly due 
to the inability to capture gene-gene and gene-environment 
interactions using a simple additive model analysis.  The 
development of a full genetic model considering influences 
from all genetic and gene-environment interactions has 
been very successful and substantially reduced the missing 
heritability evidenced by the conventional approach.  It 
has been held that the action of Fangji is a result of synergy 
of many small-effect ingredients or compounds, in a way 
similar to a quantitative trait contributed by numerous small-

effect genetic factors.  It will thus be intriguing to clarify the 
molecular and genetic machinery underlying the mechanisms 
of Fangji and the phytochemical substrates of Fangjiomics.  To 
this end, full genetic model analysis of GWAS from human 
studies or animal models is instrumental.  GWAS, or GWAS 
combined with analysis of other omics, will offer novel 
insights with a systematic and dynamic bioinformatic flow 
regarding Fangji’s mechanism.
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