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Abstract
Schizophrenia is considered primarily as a cognitive disorder.  However, functional outcomes in schizophrenia are limited by the lack 
of effective pharmacological and psychosocial interventions for cognitive impairment.  GABA (gamma-aminobutyric acid) interneurons 
are the main inhibitory neurons in the central nervous system (CNS), and they play a critical role in a variety of pathophysiological 
processes including modulation of cortical and hippocampal neural circuitry and activity, cognitive function-related neural oscillations 
(eg, gamma oscillations) and information integration and processing.  Dysfunctional GABA interneuron activity can disrupt the 
excitatory/inhibitory (E/I) balance in the cortex, which could represent a core pathophysiological mechanism underlying cognitive 
dysfunction in schizophrenia.  Recent research suggests that selective modulation of the GABAergic system is a promising intervention 
for the treatment of schizophrenia-associated cognitive defects.  In this review, we summarized evidence from postmortem and animal 
studies for abnormal GABAergic neurotransmission in schizophrenia, and how altered GABA interneurons could disrupt neuronal 
oscillations.  Next, we systemically reviewed a variety of up-to-date subtype-selective agonists, antagonists, positive and negative 
allosteric modulators (including dual allosteric modulators) for α5/α3/α2 GABAA and GABAB receptors, and summarized their pro-
cognitive effects in animal behavioral tests and clinical trials.  Finally, we also discuss various representative histone deacetylases 
(HDAC) inhibitors that target GABA system through epigenetic modulations, GABA prodrug and presynaptic GABA transporter inhibitors.  
This review provides important information on current potential GABA-associated therapies and future insights for development of 
more effective treatments.
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Introduction
Schizophrenia is a devastating psychiatric disease that affects 
approximately 1% of the population worldwide.  This disor-
der is characterized by a heterogenous combination of symp-
toms that can be divided into positive symptoms including 
delusions and hallucinations, negative symptoms of impaired 
motivation, social withdrawal and affective flattening, and 
cognitive deficits such as impairments in attention, reasoning, 
processing speed as well as verbal and working memory[1, 2].  
The onset of psychosis typically occurs in late adolescence or 
early adulthood, but there are rare cases in which symptoms 
emerge during childhood or old age.  A decline in cognitive 

ability or prodrome often precedes the onset of the first psy-
chotic episode[3].  Cognitive symptoms persist throughout the 
course of the illness, and are the most important factors in 
long-term functional outcomes in schizophrenia[1, 2, 4, 5].

Although schizophrenia is typically classified as a psychotic 
disorder[1, 5], some suggest that it should be “considered pri-
marily and foremost as a cognitive disorder”[1].  Current phar-
maceutical treatments are partially effective in reducing posi-
tive symptoms, but not for negative and cognitive symptoms.  
Therefore, functional outcomes in schizophrenia are limited by 
the lack of effective pharmacological and psychosocial inter-
ventions for cognitive impairment[1, 2, 6].

γ-Aminobutyric acid (GABA) interneurons are the main 
inhibitory neurons in the central nervous system (CNS), and 
they play a critical role in a variety of physiological processes 
including modulation of cortical and hippocampal neural cir-
cuitry and activity[7, 8], cognitive function-related neural oscilla-
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tions (eg  gamma oscillations)[9] and information integration and 
processing[10].  Multiple lines of evidence strongly support that 
the GABAergic system is a major convergence point for both 
genetic and environmental risk factors of schizophrenia[11].  
For instance, a recent large genome-wide association study 
(GWAS) involving 11 355 schizophrenia patients and 16 416 
controls identified copy number variations (CNVs) enriched 
in genes related to GABA neurotransmission[12].  Duplica-
tions were strongly enriched for components of GABAA 
receptor complexes, where the most highly associated genes 
were α5, β3, and δ receptor subunits.  It is known that exces-
sive α5-GABA receptor signaling can contribute to cognitive 
impairment of schizophrenia (discussed below), thereby pro-
viding strong support for the view that tonic inhibition medi-
ated by α5 and δ subunits-containing GABAA receptors could 
be disrupted in schizophrenia[12].  Mutations in schizophrenia-
linked genes such as DISC1[13], NRG1 and ERBB4[14] can lead to 
disrupted GABA interneuron development, perturbed GABA 
circuitry and impaired synchrony of neural oscillations.  Envi-
ronmental factors such as prenatal infection and hypoxia, 
stress, smoking and cannabis use, when interacting with risk 
genes, can also contribute to schizophrenia[15, 16].  Dysfunc-
tional GABA interneuron activity can disrupt the excitatory/
inhibitory (E/I) balance in the cortex[17], which could be a core 
pathophysiological mechanism underlying cognitive dysfunc-
tion in schizophrenia.  In this review, we will discuss evidence 
from postmortem and animal studies for abnormal GABA 
neurotransmission in schizophrenia, and how altered GABA 
interneurons could disrupt neuronal oscillations underlying 
cognitive impairment in schizophrenia.  We will also discuss 
potential therapeutic targets and pharmacological treatments 
for cognitive deficits, with a focus on selective GABAA and 
GABAB receptor modulators, epigenetic modulations, GABA 
prodrug and presynaptic GABA transporter inhibitors.

GABA system and cognitive dysfunction in schizophrenia
Reductions in parvalbumin and GAD67 expression are associated 
with alterations in GABA transmission in schizophrenia
Several markers of GABA neurotransmission are altered in 
cortical regions of patients with schizophrenia.  The most con-
served and consistent finding from multiple imaging, animal 
and postmortem studies is the reduction in mRNA and pro-
tein levels for the 67 kDa isoform of glutamic acid decarboxyl-
ase (GAD67).  This enzyme is responsible for synthesizing the 
majority of cytosolic and vesicular GABA[18] in the dorsal lat-
eral prefrontal cortex (DLPFC), which is responsible for work-
ing memory and selective attention[19–21].  Decreased GAD67 
mRNA is selectively observed in a subpopulation of prefron-
tal cortex (PFC) GABA neurons that express the calcium-
binding protein parvalbumin (PV)[19, 22].  Around 45% of PV-
mRNA positive neurons have undetectable levels of GAD67 
mRNA and such alteration is due to reduction in PV mRNA 
in neurons rather than a decreased density of PV neurons.  By 
contrast, approximately 10% of PV neurons do not express 
GAD67 mRNA in healthy controls[22–24].  Furthermore, since 
the reduction in PV mRNA is also found in non-medicated 

schizophrenia patients and PV mRNA is not altered in the PFC 
of primates treated long-term with antipsychotics[22–24], altera-
tions in PV mRNA are unlikely to be due to antipsychotic 
drugs.

Parvalbumin functions as a slow calcium buffer, and can 
influence GABA release.  Genetic elimination of this protein 
leads to various alterations in GABA neurotransmission.  
Taken together, these findings support the hypothesis that 
the capacity of PV neurons to synthesize and release GABA is 
impaired in the cortex of patients with schizophrenia[25].  The 
reduction in GAD67 mRNA, however, does not necessarily 
mean that the GABA concentration is decreased in schizophre-
nia, because the reduced GAD67 mRNA may also be associ-
ated with slower GABA metabolism[26].  Interestingly, a recent 
study found that the cerebrospinal fluid concentration of 
GABA analyzed by high-performance liquid chromatography 
was significantly reduced in first-episode psychosis patients 
compared with healthy controls, and patients with low GABA 
concentrations tend to have poor attention.  Therefore, this 
study provides clinical evidence for a potential role of GABA 
in an early-stage schizophrenia[27].  

GABA inhibitory circuit deficits lead to impaired neural 
oscillations in schizophrenia
Many important brain functions depend on the coordinated 
activity of large populations of neurons within one region 
or across brain regions.  Neural oscillations in the gamma 
frequency range (30–80 Hz) in the PFC have been studied 
extensively because of their strong relationship with complex 
cognitive functions, and because disruption of gamma oscilla-
tions could be an important mechanism underlying cognitive 
deficits in schizophrenia[28].  Functionally, gamma-band oscil-
lations in the human PFC increase in proportion to working 
memory load[29].  Compared to healthy controls, schizophrenia 
patients have a marked decrease in the amplitude and phase 
synchronization of gamma oscillations in the frontal cortex, 
and they tend to perform poorly on executive and working 
memory tasks[28, 30].  These deficits in gamma oscillations are 
observed in schizophrenia patients, independently of antipsy-
chotic medication treatment[30, 31].  

In the hippocampus, gamma-band oscillations originating 
in the CA3 and CA1 regulate network activity that promotes 
the encoding of spatial information and formation of episodic 
memories[32].  Slow theta-frequency oscillations (4-8 Hz) are 
complementary to gamma oscillations, and are especially 
important for episodic memory formation.  Both gamma and 
theta oscillations are observed independently in the cortex 
and hippocampus but they are also coupled to each other[9].  
Aberrant theta-gamma coupling can affect cognitive function 
in schizophrenia, such as visuospatial working memory[33].  
In addition, ketamine, a pharmacological agent often to cre-
ate animal models of schizophrenia, has been shown to alter 
gamma-theta oscillatory coupling in the hippocampus[34].  
Taken together, these findings support the view that disrupted 
functional connectivity of cortical and hippocampal neural 
networks is a core mechanism underlying cognitive impair-
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ment in schizophrenia[31].
It has been suggested that GABAergic inhibitory circuits 

play a crucial role for the generation of gamma oscillations 
and synchrony[28].  Despite the presence of many cortical inter-
neuron subtypes, only some contribute to the generation of 
gamma oscillations.  Several lines of evidence have linked dis-
turbances in the subset of perisomatic-targeting, fast-spiking, 
PV-expressing (FS PV) neurons to impaired gamma oscilla-
tions and working memory deficits in schizophrenia.  The syn-
chronous activity of FS PV neurons can generate gamma oscil-
lations in mice in vivo.  Optogenetic stimulation[35, 36] and inhi-
bition[35] of FS PV neurons selectively enhances and suppresses 
gamma oscillations in vivo, respectively.  A subset of the FS 
PV interneurons, namely the parvalbumin-containing basket 
neurons (PVBC) that synapse on the somas of target pyrami-
dal neurons and mediate fast, strong and shunting inhibition, 
are primarily responsible for gamma oscillations[37].  Networks 
of these basket neurons connected by gap junctions have been 
shown to produce large synchronous inhibitory postsynaptic 
potentials (IPSPs) to pyramidal neurons, thus exerting precise 
inhibitory control over the temporal coding of information in 
pyramidal neurons[25, 37].  PV interneurons are also important 
for intrinsic theta rhythm generation in the hippocampus[38].  
Detailed neuronal mechanisms by which PV neurons mediate 
neural oscillations have been reviewed elsewhere[25, 26, 28, 37, 39–42].

The reduced expression of GAD67 and PV in schizophre-
nia is accompanied by disinhibition of cortical excitatory 
neurons and diminished neuronal oscillation and synchrony.  
For example, GAD67[26] and PV[43]  protein levels are lower 
in PVBC boutons in DLPFC of human postmortem brain 
tissues[43], and downregulation of these two proteins in PV 
neurons probably reduces gamma oscillatory activity[44]  in 
PFC.  In addition, by conditionally knocking out one allele of 
the Gad1 gene (the gene encoding for GAD67) in PV neurons 
in rats, Lazarus et al found that the decrease in GAD67 mRNA  
reduced PV-neuron synaptic output[45].  This in turn, disinhib-
ited local pyramidal neurons in the DLPFC[45].  Other subtypes 
of interneurons such as parvalbumin-expressing chandelier 
cells (PVChCs) and cholecystokinin-expressing (CCK) inter-
neurons also promote gamma synchronization in vivo[46].  
As a whole, these findings suggest that reduced PV neuron 
output could result from decreased GABA synthesis and cal-
cium buffering.  This could be the cause of impaired gamma 
oscillations and working memory deficits in schizophrenia.  
Restoring the activity of GAD67 and PV within PV neurons, in 
particular PVBC, could be a promising strategy for improving 
cognitive deficits in schizophrenia[43].  

Furthermore, interneurons that innervate the perisomatic 
regions of the targeted pyramidal neurons such as axo-somatic 
PV basket neurons, axo-axonic PV chandelier neurons and 
CCK-containing neurons, also appear to be essential for gener-
ating and maintaining the fast oscillations (eg,  gamma oscilla-
tions) and slow theta-frequency oscillations in the hippocam-
pus, which play a critical role in different aspects of episodic 
memory[47].  

Alterations in other GABA genes related to GABA neurotransmission
In addition to GAD67 and PV, the expression of other key pro-
teins in GABAergic pathways such as GABA transporter type 
1 (GAT-1), REELIN (which is encoded by the gene RELN in 
humans), NMDA receptor subunits (eg,  NR2A, NR3A), nico-
tine acetylcholine receptor (nAChR) α4 and α7 subunits, and 
brain-derived neurotrophic factor (BDNF)[48] are reduced in 
the brains of schizophrenia patients[49, 50].  

Reelin is essential for regulating the growth, maturation, 
synaptic plasticity[51] and positioning of interneurons in the 
developing and adult brain[52], and hence plays a crucial role 
in the pathophysiology of schizophrenia[51].  The decreased 
number of dendritic spines observed in postmortem brains of 
schizophrenia patient is likely due to a deficit in reelin[51].  At 
the molecular level, reelin can enhance GABA inhibitory sig-
nals through inhibition of GAT-1 internalization and increase 
KCC2 (potassium chloride cotransporter 2) expression[53].  
Hypermethylation of the RELN promoter can result in silenc-
ing of reelin[54], with reduced transcription[53, 54].  

As molecular alterations of these proteins have been impli-
cated in the pathophysiology of prefrontal cortex dysfunction, 
they are potential targets for novel pharmacological interven-
tions.  

The GABAA receptor as a therapeutic target in schizo­
phrenia
The GABAA receptor is a heteropentameric ligand-gated chlo-
ride channel, widely distributed in the mammalian CNS, that 
mediates synaptic and extrasynaptic inhibition.  These recep-
tors are also the site of action of a number of clinically impor-
tant drugs, including benzodiazepines (BZs), barbiturates, and 
anesthetics[55].  GABAARs consist of five different subunits, 
composed of 19 known subtypes (α1-6, β1-3, γ1-3, δ, ε, π, θ 
and ρ1–3), although three subunits (ρ1–3) are also thought to 
form the GABAC receptor[56].  Figure 1(A) depicts the structure 
and GABA/benzodiazepine binding sites of GABAA receptors, 
whereas (B) depicts phasic vs tonic inhibition of the postsynap-
tic membrane mediated by synaptic vs extrasynaptic GABAA 
receptors, respectively.

Benzodiazepine-like ligands for the treatment of cognitive 
defects in schizophrenia and other neuropsychiatric disorders
In general, the sedative and addictive effects of classical non-
selective GABAA receptor benzodiazepines have limited their 
usefulness in treating psychosis and cognitive impairments 
in schizophrenia.  Consequently, a GABAA receptor subtype-
selective compound could overcome these limitations of the 
classical BZDs without unwanted side effects.  Compared to 
full agonists or antagonists, allosteric modulators like BZDs 
that possess selective affinity and/or efficacy for different 
GABAA receptor subtypes have been widely used for various 
purposes in schizophrenia[67].  Despite some positive reports, 
there is no consistent evidence of efficacy of BZDs as adjunc-
tive treatment for positive symptoms in schizophrenia[67].  
Convincing evidence for long-term cognitive benefits is also 
lacking[56].
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GABAA receptors containing the α1 subunit are the most 
prevalent BZDs-sensitive GABAA receptors in the brain[68].  
There is insufficient evidence that selective allosteric agonists 
at α1 subunit-containing GABAA receptors could improve cog-
nition in schizophrenia[68].  Two such compounds, triazolam 
and zolpidem, impair cognition in adult rhesus monkeys in 
the object retrieval with detours (ORD) task of executive func-
tion[69].  Furthermore, GABAA receptors containing α3 subunits 
inhibit the dopamine system[70],  and  reduction in α3 subunit 
expression could contribute to a hyperdopaminergic state in 
schizophrenia[71].  Partial positive agonists at α3 subunits (eg,  
ELB139) could thus be potential antipsychotics[70].

Reduction in α5-GABAA receptor signaling might indirectly 
contribute to increased dopamine signaling in schizophre-
nia[72, 73].  Therefore, selective allosteric α5 subunit activators 
could also have potential as antipsychotic medications.  Mul-
tiple lines of evidence implicate GABAA receptors containing 
α2 and/or α3 and α5 subunits in cognition.  The following sec-
tions will focus on these two GABAA subtypes and how selec-
tive modulators at these subtypes can improve cognition in 

neuropsychiatric disorders such as schizophrenia, Alzheimer’s 
disease and Down syndrome.

Role of α5 GABAA receptor in cognitive function
The α5 subtype constitutes 5%–10% of total brain GABAA 
receptors, but 25% in the hippocampus[55].  The α5-GABAA 
receptor is mainly localized in the dendritic regions of the 
CA1–CA3 hippocampal areas[55, 74], where they can modu-
late excitatory glutamatergic input[75].  α5 subunits are also 
expressed in olfactory bulb, amygdala, hypothalamus and 
neocortex (layer V and VI) but to a lesser extent[55, 74].  

Studies in rodents have confirmed the role of α5-GABAA 
receptors in cognition through a variety of genetic and phar-
macological approaches[55, 59, 76].  For example, mice deficient 
for α5 subunits (α5-/-) had better spatial learning in the water 
maze[55].  Moreover, α5 (H105R) mutant mice with reduced 
α5 GABAA receptors on hippocampal pyramidal neurons 
had stronger trace fear conditioning, but not in hippocampal-
independent delay or contextual fear conditioning[59].

The α5 GABAA receptor subunit mediates tonic inhibition 

Figure  1.  (A) The GABAA receptor generally contains two α, two β and one γ subunit that are arranged in a αβαβγ fashion, of which the γ subunit may 
be replaced by either an δ, ε or θ subunit, and the β subunit may be replaced by σ[57].  Benzodiazepines enhance the action of the neurotransmitter 
GABA at GABAA receptors by interaction with their allosteric modulatory benzodiazepine binding site (BZ site) that is formed by one of the α subunits 
(α1-3 and α5) and γ2 subunit [56].  The BZ site is distinct from the endogenous ligand GABA binding site that occurs at the interface of the α and β 
subunits[56, 58].  The α subunit is of importance in determining the pharmacological properties of the benzodiazepine drugs.  (B) GABA-induced chloride 
ion influx hyperpolarizes postsynaptic neurons, generating inhibitory postsynaptic potentials (IPSPs)[56].  GABAA receptors mediate two distinct effects 
on the postsynaptic membrane: synaptic GABAA receptors containing the α1-, α2- and α3- subunits and the ubiquitous γ2 subunit [59] have been shown 
to possess a low affinity for GABA and mediate fast but short-lasting phasic inhibition, whereas extrasynaptic GABAA receptors with a high-affinity for 
GABA that contain the relatively rare subunits α4, α5, α6, and δ mediate slow but long-lasting tonic inhibition[56, 59, 60, 61, 62].  The function of phasic 
inhibition is critically dependent on the synaptic location of the subunit and the IPSP timing.  One crucial role of phasic inhibition is to provide timing-
based signaling for setting the temporal window of neuron networks firing[63], therefore it is important for the generation and regulation of gamma 
(γ) or theta (θ) oscillations and synchrony[64].  In contrast, tonic inhibition is responsible for generating about 75% of the total inhibitory conductance 
received by hippocampal neurons[65] and regulates neuronal excitability through its effects on the magnitude and duration of the postsynaptic excitatory 
postsynaptic potential (EPSP)[66].
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in hippocampal neurons[77], and regulated gamma oscilla-
tions[77, 78].  Genetic knock-down or pharmacological inhibi-
tion, negative modulation of α5-GABAA receptors promotes 
hippocampal gamma oscillations[77], long-term potentiation 
(LTP), and learning[79].  For example, genetic reduction of α5 
and δ subunits blocks tonic inhibition in CA3 pyramidal neu-
rons, and produces spontaneous gamma oscillation in vitro.  
Together, these results suggest that reducing α5-GABA signal-
ing could improve hippocampus-based cognitive functions.  
However, other studies involving genetic reduction of α5 
subunit expression found behavioural abnormalities related to 
schizophrenia, arguing against the potential therapeutic value 
of this approach.  For example, α5 (H105R) mutant mice also 
display attenuated prepulse inhibition (PPI), increased sponta-
neous locomotor activity[72]  and latent inhibition (LI) deficits.

α5 subtype selective ligands as nootropic drugs
α5 negative allosteric modulators
Inverse agonists at α5-GABAA receptors could have potential 
to enhance cognition.  Several α5 GABAA receptor-selective 
ligands have tested in animal models.  Non-selective BZD 
inverse agonists may enhance cognitive function in rodents 
(eg,  β3-CCM facilitated spatial learning)[80] but can cause anx-
iety-like behavior (eg,  β3-CCM; FG 7142)[79, 80, 81] and seizures 
(eg,  DMCM and FG 7142)[58, 80, 82, 83] and cause increased vigi-
lance.  These side effects prevent these compounds from being 
clinically useful[79].  Reduced expression of α5 GABAA recep-
tors can enhance cognition in some contexts, while α1 subunit 
inverse agonists can promote seizures.  Hence GABAA recep-
tors containing the α5 subunit would appear to be more prom-
ising as a target for the development of cognition-enhancing 
compounds.

The imidazo-benzodiazepine L-655,708 (also known as 
FG-8094) has weak inverse agonist efficacy at all four GABA 
receptor subtypes, but a 50–100-fold higher selectivity for the 
α5 subunit.  This drug enhances performance in normal rats 
in both the learning and recall phases of the water maze, at 
a dose previously shown to not be pro-convulsant.  Unfortu-
nately, the pharmacokinetic profile of this compound makes 
it unsuitable for further development as a drug.  Other simi-
lar α5 selective compounds, including RY-023, RY-024 and 
RY-080, can promote seizures, which obviously precludes 
them from clinical use[79].

To address the side effects associated with targeting GABAA 
receptors containing the α1 subunit, some have investigated 
compounds with selectivity at the α5 receptor[84].  One exam-
ple of this is RO4938581, an imidazo-triazolo-benzodiazepine 
with both binding and functional selectivity at the α5 receptor.  
This compound reversed scopolamine-induced working mem-
ory impairment in the delayed match-to-position task (DMTP 
task) and diazepam-induced spatial learning impairment in 
the water maze.  More importantly, RO4938581 did not pro-
duce anxiety or seizures at  ~30% occupancy of hippocampal 
GABAA α5-receptors[84, 85].  RO4938581 improved performance 
in a prefrontal cortex-mediated executive function task in 
monkeys[84].  This compound also improved cognitive deficits 

in rats induced by sub-chronic and neonatal administration of 
phencyclidine (PCP) (a NMDAR antagonist) in novel object 
recognition (NOR) and intradimensional/extradimensional 
attentional set-shifting (ID/ED) task, respectively[86].  

NOR and ID/ED tasks are two preclinical behavioral assays 
that are related to cognitive tests used to evaluate patients 
with schizophrenia, such as the MATRICS (measurement and 
treatment research to improve cognition in schizophrenia) 
and CNTRICS (cognitive neuroscience treatment research to 
improve cognition in schizophrenia) test packages[61, 86–90].

RO4882224, a functional selective inverse agonist for the 
α5-GABAA receptor from Roche, is another imidazo-triazolo-
benzodiazepine.  RO4882224 enhanced hippocampal LTP and 
reversed scopolamine-induced working memory impairment 
in the DMTP task in rodents[85].  One derivative of RO4938581, 
Basmisanil (RG1662 or RO5186582), failed at Phase II clini-
cal trial for the treatment of cognitive impairments in Down 
syndrome[91] and schizophrenia.  There is an ongoing Phase II 
clinical trial with Basmisanil for treating cognitive deficits in 
schizophrenia (NCT02953639).  Other compounds, such as the 
thiophene MRK-536, enhanced performance in a Morris water 
maze of spatial memory[92] without pro-convulsant effects.

PWZ-029 is another compound with binding selectivity 
and moderate functional selectivity at α5-containing GABAA 
receptors.  It enhanced encoding and consolidation of memory 
in normal rats tested with the passive avoidance task at doses 
that did not cause anxiety-like effects or seizure[93], but had 
no effect in the active avoidance task.  Moreover, PWZ-029 
attenuated scopolamine-induced impairment of pavlovian 
fear-conditioned contextual memory in mice[94], and reversed 
scopolamine-induced deficits in novel object recognition, but 
not the water maze[95].  PWZ-029 also improved cognitive defi-
cits induced by MK-801 in rodents tested on novel object rec-
ognition in the water maze.  PWZ-029 did not improve deficits 
in social recognition memory[96].  An important caveat with 
studies of GABAA α5 drugs in animal models is the difficulty 
in translating the results to schizophrenia, since many features 
are difficult to accurately reproduce or measure in animals[97].  

Another compound, α5IA, is a triazolophthalazine with an 
equivalent affinity for GABAA receptors-containing either an 
α1, α2, α3 and α5 subunit but with greater inverse agonist effi-
cacy than L-655,708 at the α5 subtype (40% for a5IA vs 17% for 
L-655,708)[79, 92, 98].  α5IA enhances LTP, and improves encoding 
and recall in the DMTP task, without producing anxiety-like 
effects or seizure[98–99].  In addition, α5IA can reverse ethanol-
induced memory impairment in healthy volunteers[100].  
However, α5IA actually worsened some cognitive impair-
ments in elderly people[98].  This drug also has a nephrotoxic 
metabolite that prevents long-term clinical use in humans.  
The structurally similar compound α5IA-II has improved oral 
bioavailability and efficacy selectivity but has pro-convulsant 
effects[92].  Another compound MRK-016 (pyrazolotriazine) 
with high efficacy selectivity at the α5 subtype had promising 
cognitive effects in animal models but was poorly tolerated in 
humans[92, 101].

In summary, inverse agonists at α5 GABAA receptors have 
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cognition-enhancing effects in pre-clinical studies.  However, 
many of these drugs have side effects such as anxiety or sei-
zure, and there is the potential for them to amplify psychotic 
symptoms since they can impair PPI and latent inhibition in 
animals.

Dual allosteric modulators of α5 GABAA receptors and α7 nAChRs
The α7 neuronal nicotinic-acetylcholine receptor (α7 nAChR) 
has been investigated as a valid therapeutic target for treating 
cognitive deficits in schizophrenia[102].  Genome-wide associa-
tion studies have linked deletion of a genetic locus containing 
the α7 nAChR to increased risk for schizophrenia[103].  In addi-
tion, linkage studies have strongly associated variants in the 
α7 nAChR gene with deficient P50 auditory gating in schizo-
phrenic patients[104].  Emerging evidence suggests that P50 
sensory gating deficits reflect various cognitive (eg,  executive 
functioning) and perceptual dysfunctions in schizophrenia[105].  

Interestingly, individuals diagnosed with schizophrenia have 
among the highest rates of cigarette smoking[106].  Reduction of 
α7 nAChR function or expression has been identified as a poten-
tial mechanism for elevated tobacco use in schizophrenia[107].  
Moreover, multiple studies have found that nicotine, the major 
psychoactive component of tobacco, can improve cognitive 
function (eg, attention and spatial working memory) in schizo-
phrenic patients[106, 108] by activating α7 nAChRs.  Enhancing the 
activity of α7 nAChRs is a potential strategy for ameliorating 
cognitive impairment in schizophrenia.

α7 nAChRs are densely expressed in the hippocampus, 
especially in interneurons where the density of α7 nAChRs is 
decreased in schizophrenia[109].  Given the preferential expres-
sion of α7 nAChRs in interneurons, the effects of α7 nAChR on 
hippocampal neurotransmission is mainly mediated by activation 
of GABA interneurons[110].  Pre-synaptic α7 receptors facilitate 
the release of glutamate and GABA[102], whereas postsynaptic α7 
receptors can regulate GABAA receptor signaling[109].  α7 nAChR 
selective positive allosteric modulators (PAMs) are able to pre-
serve the temporal integrity of neurotransmission[111] and can 
improve cognitive deficits in animal models[102].

522-054, a novel “dual modulator” that acts both as an α5 
GABAA receptor negative allosteric modulator (NAM) and a 
selective α7 nAChR PAM, was able to restore scopolamine-
disrupted deficits in the five-choice serial reaction time 
test (5-CSRTT) and the eight-arm radial arm maze (RAM).  
5-CSRTT is a behavioral test that measures the visual attention 
and impulsivity in rodents.  The test chamber has five holes 
on one wall, and a reward dispenser on the opposite wall.  
The task requires the animals to detect a briefly illuminated 
light presented in one of the five holes and identify the correct 
spatial location of the hole with nose pokes in order to obtain 
reward[112].  The accuracy of visual stimulus discrimination 
reflects the attentional capacity of the animals[112].  Intraperito-
neal injection of 522-054 in the rats can significantly improve 
the baseline performance of scopolamine-treated (1.25 mg/kg, 
ip) animals at a dose of 0.003 mg/kg, suggesting beneficial 
effects on attention.

The eight-arm RAM task evaluates hippocampus-based spa-

tial learning and memory in rodents.  Animals must find the 
food reward at the end of four randomly chosen maze arms 
based on spatial navigation cues.  At a dose of 0.03 mg/kg, 
522-054 had a trend towards reversing the acquired short-term 
and long-term memory impairments caused by scopolamine 
(1 mg/kg, ip) in rats.

Flumazenil (an α1- and α5-subunit-selective antagonist) and 
methyllycaconitine (a selective α7 nAChR antagonist) blocked 
the effect of 522-054 on scopolamine-induced attentional and 
cognitive deficits, suggesting that simultaneous allosteric 
modulation of different receptors mediating related functions 
can have synergistic effects on cognition[111].  It is possible 
that compounds with relatively low specificity and moderate 
potency could be effective[113].

α5 positive allosteric modulators
α5-GABAA receptors mediate the majority of tonic inhibi-
tion in hippocampal neurons, and some have suggested that 
reduced GABA inhibitory input could lead to hyperactivity in 
the ventral hippocampal dopamine system[114].  Neural activ-
ity in the PFC can synchronize with the neural oscillations in 
ventral hippocampus, so it is possible that PAMs at α5 GABAA 
receptors could restore dopamine tone by selectively reducing 
vHPC output and vHPC-PFC oscillatory activity, with positive 
effects on cognition[115].  PAMs selective for GABAA α5 recep-
tors improve hippocampal-dependent memory in a rodent 
model of age-related memory impairment where CA3 neu-
rons have excess firing rates[116].  In contrast, other α5-selective 
PAMs can worsen cognition.

For example, in methylazoxymethanol acetate  (MAM)-
treated rats, the α5-selective partial agonist SH-053-2′F-R-CH3 
impaired cognitive performance[58] but normalized the aber-
rant increase in the number of spontaneously firing dopamine 
neurons in the VTA to levels comparable to saline-treated 
rats, and reduced locomotor response to amphetamine[117].  
SH-053-2′F-R-CH3 has no effect on visual recognition and 
spatial working memory in rhesus monkeys[118].  Similarly, 
in an immune-neurodevelopmental model of schizophre-
nia, the S-isomer of SH-053-2′F-R-CH3 (SH-053-2′F-S-CH3) 
has detrimental effects on both cognitive function and social 
interaction[119].  In contrast, SH-053-2′F-S-CH3 reduces amphet-
amine-induced hyperactivity[119].  These findings suggest that 
α5-selective PAMs are not suitable for treating cognitive defi-
cits in schizophrenia.  However, positive modulation at α5 
GABAA receptors could be a promising adjunctive treatment 
for targeting positive symptoms in schizophrenia.

Cognitive enhancement through α2 and/or α3 GABAA receptor 
modulation
GABAA-α2 receptor and schizophrenia
GABAA receptors containing α2 subunits comprise 15%–20% 
of all GABAA receptors[120].  Within the cortex, α2-containing 
GABAA receptors are enriched on the axon-initial segments 
(AIS) and perisomatic region of pyramidal neurons that are 
opposed to PVChC and CCK-basket cell (CCK-BCs) terminals, 
respectively[121].  PVChCs have arrays of boutons (cartridges) 
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immunoreactive for the GABA membrane transporter 1 (GAT-
1) that innervate the AIS of postsynaptic target neurons[122].  
PVChCs are important for facilitating synchronization of large 
populations of pyramidal neurons and are thus critical for 
working memory[122].  In addition, animal studies have sup-
ported an important role for α2-containing GABAA receptors 
in schizophrenia-related cognitive impairment.  For example, 
mice with down-regulated α2 subunits in the frontal cortex 
have PPI deficits, reduced gamma oscillations, and impair-
ments in working memory[121].

Postmortem and animal studies have reported that the den-
sity of PVChC axon cartridges appears to be reduced in DLPFC 
layer 2-4 in schizophrenia[26, 122–123].  Moreover, the immunoreac-
tivity for the GABAA receptor α2 subunit is markedly elevated 
in schizophrenia, while the density of α2-labeled AIS is nega-
tively correlated with the density of PVChCs cartridges[124].  
These findings may be interpreted as compensatory responses 
to the diminished presynaptic GABA input[25, 120].  Based on 
this interpretation, one would predict that augmenting GABA 
neurotransmission from chandelier neurons through GABAA 
receptors containing the α2 subunit could restore gamma-
frequency synchronized neuronal activity required for working 
memory[125–126].  Therefore, a positive allosteric modulation of 
α2 subunit-containing GABAA receptors could be a promising 
therapeutic strategy in schizophrenia.

GABAA α2/ α3 positive allosteric modulators
MK-0777 (also known as TPA-023 or L-830982) is a selective 
partial positive allosteric modulator at α2 and α3 subtypes.  
MK-0777 can improve performance on several cognitive tasks 
in patients with schizophrenia.  Moreover, MK-0777 improved 
frontal gamma band power [127].  However, a subsequent larger 
clinical trial (n=60) failed to replicate these promising find-
ings[128].  Since MK-0777 is a partial agonist of α2 subunits, a 
more selective agonist with a greater potency at the GABAA 
receptor-containing α2 subunit might work better[128].

There are questions about the role of PVChCs as neural sub-
strates for the reduced frontal gamma oscillations in patients 
with schizophrenia[26].  PVChCs may depolarize cortical 
pyramidal neurons rather than hyperpolarizing them, and so 
PVChCs may be a potent source of a slow depolarizing current 
that mimics the type of slow, NMDA-like depolarization of 
pyramidal cells[26].  Moreover, the slow kinetics of α2 GABAA 
receptors does not appear to meet the requirement for the 
strong and fast inhibition required for gamma-band neural 
oscillations[26, 129, 130].  In contrast, other studies have indicated 
that α2 GABAA receptors are strongly coupled to theta oscilla-
tions[26, 131].  Consequently, the compensatory effects or lower 
presynaptic GAT-1 and higher postsynaptic GABAA α2 recep-
tors, in response to decreased GABA neurotransmission may in 
fact increase EPSCs at the AIS.  This could be a way to increase 
excitation and restore the E/I imbalance in schizophrenia[26].

GABAB receptor ligands as cognitive enhancers
GABAB receptors and schizophrenia
GABAB receptors are G-protein-coupled receptors consist-

ing of GABBR1 and GABBR2.  Unlike GABAAR, GABABRs 
are found outside the synapse and have high affinity for 
GABA[132].  They are widely distributed in the brain and regu-
late neuronal network activity[133], neurodevelopment[134] and 
synaptic plasticity[135].  Given their prevalence and widespread 
distribution in the CNS, it is not surprising that dysfunctions 
of GABAB receptors have been implicated in numerous CNS 
disorders such as major depression[136], schizophrenia[137], bipo-
lar disorder[138] and seizures.

Multiple lines of evidence implicate GABAB receptors in 
the pathophysiology of schizophrenia[139].  GABAB receptors 
are markedly reduced in the cerebellum[139], hippocampus[140], 
entorhinal cortex, inferior temporal cortex[141] of patients with 
schizophrenia compared with healthy controls.  GABAB recep-
tors in the entorhinal cortex and hippocampus are important 
for memory[142].  Agonist activation of GABAB inhibits neu-
ronal excitation and gamma oscillations[143], while antago-
nists promote theta and gamma oscillations[144].  Inhibition of 
postsynaptic GABAB receptors can enhance LTP by length-
ening NMDA receptor-mediated currents[145].  Inhibition of 
presynaptic GABAB receptor enhances GABA release, thereby 
decreasing calcium conductance and subsequent GABA 
release[146].

GABAB receptor antagonists
GABAB receptor antagonists can improve cognition[145].  Pro-
posed mechanisms include facilitating synaptic plasticity and 
LTP[147–148] and entraining neuronal oscillations[144, 149].  For 
example, intrahippocampal infusion of the antagonist 2-OH 
saclofen can markedly reverse scopolamine-induced impair-
ments in LTP and Y-maze performance[148].  Similarly, the 
antagonists CGP 55845 and CGP 52432 enhance impaired LTP 
in the dentate gyrus of Ts65Dn mice, a genetic mouse model 
of Down Syndrome[147].  Moreover, CGP 55845 significantly 
increased gamma and theta oscillations in rat brain slices[149].  
Another antagonist SCH 50911 was also found to increase 
gamma power[150].

So far, a variety of GABAB receptor antagonists have dis-
played cognition-enhancing effects in animal models of psy-
chiatric disorders.  Representative GABAB receptor antago-
nists and their effects on cognition are summarized in Table 1.  
CGP 36742 (also known as SGS742) was the first[151] and the 
only antagonist tested in clinical trials for mild cognitive 
impairment.  SGS742 enhances cognition in animal models 
and in clinical phase II trials (Table 1) (For a comprehensive 
review, see[145, 151]).  However, no current data are available 
with regards to treating cognitive deficits in schizophrenia 
using SGS742.

Despite evidence for cognitive enhancing effects of GABAB 
receptor antagonists, few studies have examined these com-
pounds in animal models of schizophrenia.  For example, in a 
recent apomorphine-susceptible (APO-SUS) young rat model 
displaying schizophrenia-relevant features[146], the level of 
GAD67 and the density of GAD67-positive cells were reduced.  
However, basal synaptic input to pyramidal neurons was 
unaltered.  In contrast, the paired-pulse ratio (PPR) at lon-
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ger inter-stimulus intervals was decreased in APO-SUS rats, 
indicative of a reduced GABA release.  This reduction could 
be caused by enhanced GABAB receptor signaling.  Interest-
ingly, the application of CGP 55845 can completely restore the 
level of PPR and cause a decrease in GABAB signaling.  The 
authors showed that CGP 55845 is likely to act at presynaptic 
GABAB receptors rather than postsynaptic receptors.  There-
fore, these findings are in line with the hypothesis that inhibi-
tion of presynaptic GABAB receptors could enhance GABA 
release.  Decreased inhibitory drive from interneurons (eg,  PV 
neurons) onto their postsynaptic targeted pyramidal neurons 
could be a core pathophysiological feature of schizophre-
nia[173], and that reduced GABA neurotransmission is highly 
correlated to cognitive defects in schizophrenia[146].  GABAB 
receptor antagonists require further investigations, especially 
in animal models related to schizophrenia in order to deter-
mine their potential for treating cognitive impairments in 
schizophrenia.

GABAB receptor agonists
The prototypic GABAB receptor agonist Baclofen is currently 
the only marketed drug targeting GABAB receptors.  Numer-
ous studies have reported that the Baclofen and other GABAB 
receptor agonists impair cognition in animal models [174].  
However, these results are not consistent.  Baclofen can ame-
liorate the recognition memory impairment induced by meth-
amphetamine [175] and the spatial working memory deficits 
induced by chronic cerebral hypoperfusion in rats [176] (for a 
more comprehensive review, see[174]).  More studies need to be 
conducted to confirm the effects of Baclofen on cognition.  

GABAB receptor allosteric modulators
The data for the effects of PAM and NAM targeting GABAB 
receptors on cognition is limited.  In the mouse passive avoid-
ance cognition paradigm, a selective GABAB receptor PAM 
GS39783 showed no deleterious effects on cognition in contrast 
to Baclofen (1 mg/kg), which significantly impaired cognitive 
performance [177].  In 2015, the novel compound 7  from Astel-
las Pharma, a sulfur-containing bicyclic compound function-
ing as a GABAB receptor PAM, was used for the prevention or 
treatment of cognitive disorders, schizophrenia and pain (pub-
lication number for patent application: WO2015056771)[178].  

Epigenetic therapies for cognitive impairment
Alterations in epigenetic regulations in schizophrenia
Epigenetic mechanisms (eg,  histone modification, chromatin 
remodeling, DNA methylation) can synergistically interact 
with genetics[53] to mediate GABA system abnormalities in 
schizophrenia.  Prominent genes include GAD1, RELN, BDNF 
and GABAB3[53, 179].  Several excellent reviews discuss epi-
genetic mechanisms in the neurobiology of neuropsychiatric 
disorders including schizophrenia[51, 53, 180–182].  These articles 
highlight several key findings about epigenetic alterations in 
schizophrenia.

Histone modifications in schizophrenia are shifted from 
open chromatin (H3K4-trimethylation, which positively regu-Co
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lates gene expression)[53] to repressive histone methylation 
(H3K27-methylation that negatively regulates gene expres-
sion) at GABAergic gene promoters (eg,  GAD1) in PFC of 
some subjects with schizophrenia[51].  In addition, the expres-
sion of histone deacetylases (HDAC) such as HDAC1 that 
facilitate downregulation of gene expression is increased in 
schizophrenic brains and correlated with reduced GAD67 
expression[51, 183].  Interestingly, overexpression of neuronal 
HDAC1 in mouse mPFC (but not in dorsal or ventral hippo-
campus) resulted in schizophrenia-like phenotypes such as 
impaired short-term memory, PPI and synaptic plasticity[184].  
In fact, many CNS disorders with cognitive impairment also 
have reduced histone acetylation[185].

DNA (cytosine-5)-methyltransferase (DNMT) (eg,  DNMT1 
and 3a) expression and DNA hypermethylation are abnor-
mally increased in gene promoters in schizophrenia, which 
consequently results in MecP2-mediated gene silencing of 
GABAergic candidate genes such as GAD1, RELN, SOX10[51] 
and BDNF[51, 53].  Therefore, epigenetic modulators acting in 
GABAergic system could remediate the epigenetic alterations 
observed in schizophrenia.

HDAC and DNMT inhibitors for the treatment of cognitive defects 
neuropsychiatric disorders
In animal models, treatment with HDAC inhibitors such as 
trichostatin A (TSA), valproate (VPA) and MS-275 can increase 
the expression of reelin and GAD67 by activating demeth-
ylation[49, 186].  In addition, co-administration of VPA with 
antipsychotics (eg,  clozapine[187], olanzapine and quetiapine) 
can synergistically potentiate VPA-induced promoter demeth-
ylation and chromatin remodeling (see review by[49]) and 
enhance antipsychotic effects[188].  VPA can elevate GABA con-
centration via synthesis, reuptake, and metabolism.  In spite 
of a few positive reports[189, 190], VPA is likely to be detrimental 
to cognition as shown in animal studies[191].  Class I HDACs 
play an important role in neuronal and brain development[192], 
and are the best-studied HDACs with respect to cognition (for 
comprehensive review on this topic, see[185]).  HDAC inhibi-
tion/deletion facilitates upregulation of a key set of genes 
involved in cognitive functions and enhances synaptic plastic-
ity and long-term memory[193, 194].

Class I HDACs HDAC 2 and 3[185, 188, 195–197] and Class II 
HDACs HDAC 5[198] and 6[188, 195, 197] could be potential tar-
gets for improving cognition in neuropsychiatric disorders.  
HDAC 1 appears to have inconsistent effects on cogni-
tion[184, 188, 195, 198–200].  Representative HDAC inhibitors that have 
effects on cognition in preclinical and/or clinical studies for 
a variety of neuropsychiatric disorders are summarized in 
Table 2.  However, these inhibitors are also reported to cause 
impairment in memory, learning and cognition in some other 
studies[182] in a brain region- and HDAC isoform-specific man-
ner[188].  Development of selective inhibitors may reduce unde-
sirable side effects, while still retaining pro-cognitive effects.  
(For comprehensive reviews on Epigenetics in CNS diseases/
cognition, see[49, 182, 185, 188, 201–202].)

Similar to HDAC inhibitors, DNMT (eg,  DNMT1 and 3a) 

inhibitors such as 5AZA and zebularine are also able to restore 
the expression of reelin and GAD67.  But the majority of these 
compounds or drugs are clinically used for cancer treatment 
(eg, 5AZA, zebularine, RG108, decitabine).  So far, there are 
few reported studies of DNMT inhibitors in animal models of 
schizophrenia[182].

In summary, the field of epigenetic drugs for the treatment 
of cognitive impairment in neuropsychiatric diseases such as 
schizophrenia is at an early stage and development of these 
drugs for cognition remains a great challenge.  Although 
HDAC and DNMT inhibitors could be of potential therapeu-
tic value in ameliorating cognitive deficits among high-risk 
individuals with schizophrenia, obstacles such as the lack of 
subtype- or brain region-specificity[188] or capacity to cross the 
blood-brain-barrier (BBB)[182, 240], difficulty with the establish-
ment of dose ranges or treatment duration in clinical trials[188], 
and severe toxicity[188] have hindered the translation to the 
clinic.

GABA prodrug with pro-cognitive and antipsychotic 
effects
BL-1020 (also known as CYP-1020) is being developed by Bio-
LineRx.  It is an ester that combines the dopamine antagonism 
of perphenazine (a typical antipsychotic D2/5-HT2  antagonist 
drug) with GABA agonist activity[241].  This drug has promis-
ing pro-cognitive and antipsychotic effects in rodent models of 
schizophrenia[242–243] and phase II clinical trials for schizophre-
nia (NCT00480571, NCT00567710, NCT00722176)[241, 244].  

Preclinical studies indicate that BL-1020 can cross the BBB[244] 
and is less likely to cause neurological or metabolic side effects 
than current antipsychotics[243, 244].  In phase II a/b clinical tri-
als, patients with chronic schizophrenia or schizoaffective dis-
order treated with BL-1020 demonstrated significant improve-
ments in cognition and psychotic symptoms.  However, the 
most recent IIb-III clinical trial (NCT01363349) designed to 
compare the cognitive effects of treatment with CYP-1020 to 
risperidone was terminated in 2013 because CYP-1020 did not 
meet its standard efficacy end points.  Therefore, future phase 
II/III clinical trials are required to determine the clinical effi-
cacy of BL-1020 compared with the established antipsychotics 
such as risperidone or clozapine.  Taken together, BL-1020 has 
shown promising signs as a novel antipsychotic and pro-cog-
nitive compound with excellent therapeutic effects for psycho-
sis and cognitive impairments, and produces fewer side effects 
that commonly occur with typical and atypical antipsychotic 
medications.  (For review, see[244])

GAT-1 inhibitors
GAT-1, the main plasma membrane GABA transporter in 
brain[132], is localized almost exclusively to axon terminals[245], 
which mediates the uptake of extracellular GABA[132].  This 
activity is generally thought to terminate the synaptic effects 
of GABA[132].  It has been shown that GAT-1-mediated GABA 
transport regulates GABAB receptor electrophysiological 
activity through synaptic GABA[132].  Blockade of GAT-1 can 
enhance postsynaptic GABABR-mediated IPSPs[246] and pre-
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synaptic effects (For a detailed review, see[132]).  Therefore, 
GAT-1 inhibitors may enhance cognition.  

In a lipopolysaccharide (LPS)-treated rat model which mim-
ics the prenatal inflammation thought to contribute to schizo-
phrenia[247], the GAT-1 inhibitor Tiagabine (TGB) (also known 
as Gabitril) prevents impairments in LTP and LTD (long-term 
depression) in male offspring but had no effect on LTD in 
control rats[248].  So far, several studies, including double-blind, 
placebo-controlled trials, have reported that TGB monother-
apy or adjunctive therapy for CNS disease (eg,  epilepsy) has 
no negative effects on cognitive function[249, 250].  In contrast, 
data for cognitive enhancing effects of this drug is lacking.  
Currently, a phase III clinical trial evaluating the effects of 
TGB on brain deficits including neurocognitive functions and 
clinical symptoms during early-stage schizophrenia is in prog-
ress (NCT00179465).

Conclusion
In conclusion, the literature reviewed above suggests that 
restoring pyramidal neuronal inhibition could normalize aber-
rant cortical and hippocampal neuronal oscillations in schizo-
phrenia.  This could ameliorate cognitive impairments such as 
episodic memory, working memory and executive function in 
schizophrenia and other neuropsychological disorders.  Phar-
macological modulation of synaptic or extrasynaptic GABAer-
gic signaling mediated by GABAA and GABAB receptors could 
restore disrupted neuronal network synchronization within or 
between brain regions-associated with learning and memory, 
which can in turn restore E/I imbalance and cognitive deficits 
in patients with schizophrenia.  Electrophysiological measure-
ments such as electroencephalography (EEG) signals, can pro-
vide an index of functional connectivity in the brain[251], that 
could serve as endophenotypes for screening candidate cogni-
tive enhancing drugs for schizophrenia.  

Overall, most of the potential cognitive-enhancing phar-
macological treatments targeting the GABA neurotransmit-
ter system have shown promise in pre-clinical studies with 
animals.  This is also true for α5 subunit-selective negative 
allosteric modulators.  The paucity of data demonstrating 
therapeutic effects of these drugs in clinical studies, however, 
has raised questions about how valid these pre-clinical stud-
ies are for predicting clinical therapeutic effects in patients.  
This problem is generic to many aspects of animal models for 
psychiatric disease and treatment[97], and emphasizes the need 
for continuing development of more powerful translational 
animal behavioural assays with better predictive validity.  One 
promising approach is the use of touchscreen-based cognitive 
tests that can deliver cognitive tests that are nearly identical 
for both humans and rodents[252].

Moreover, dual allosteric modulators acting at two different 
receptors mediating similar functions could produce synergic 
effects on cognition.  This synergistic strategy could reduce 
the dosage required for achieving optimal therapeutic efficacy, 
reduce side effects caused by individual drugs, and potenti-
ate the pro-cognitive effects.  Therefore, deliberately targeting 
multiple receptors could be a promising strategy for improv-

ing the pharmacological treatment of cognitive impairment in 
schizophrenia and other neuropsychiatric disorders.  

Finally, epigenetic therapies, in particular selective class I 
HDAC inhibitors, require further modifications in order to 
increase brain regional selectivity, capacity to cross the blood-
rain-barrier, and to reduce systemic toxicity.  The epigenetic 
machinery is difficult to manipulate with specificity, and this 
is especially problematic for pharmacological manipulation 
of higher mental functions such as cognition.  However, there 
are examples that show promise, such as inhibiting histone 
methyltransferases to treat anxiety and depression[253].  Given 
the complexity of human cognition, and the heterogeneity of 
patients with schizophrenia, it is likely that targeting multiple 
systems and individualizing pharmacological treatment to 
each patient, is the way forward.
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