Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of sustained PDGF nonviral gene delivery on repair of tooth-supporting bone defects

Subjects

Abstract

Recombinant human platelet-derived growth factor-BB (rhPDGF-BB) promotes soft tissue and bone healing, and is Food and Drug Administration-approved for treatment of diabetic ulcers and periodontal defects. The short half-life of topical rhPDGF-BB protein application necessitates bolus, high-dose delivery. Gene therapy enables sustained local growth factor production. A novel gene activated matrix delivering polyplexes of polyethylenimine (PEI)-plasmid DNA encoding PDGF was evaluated for promotion of periodontal wound repair in vivo. PEI-pPDGF-B polyplexes were tested in human periodontal ligament fibroblasts and human gingival fibroblasts for cell viability and transfection efficiency. Collagen scaffolds containing PEI-pPDGF-B polyplexes at two doses, rhPDGF-BB, PEI vector or collagen alone were randomly delivered to experimentally induced tooth-supporting periodontal defects in a rodent model. Mandibulae were collected at 21 days for histologic observation and histomorphometry. PEI-pPDGF-B polyplexes were biocompatible to cells tested and enzyme-linked immunosorbent assay confirmed the functionality of transfection. Significantly greater osteogenesis was observed for collagen alone and rhPDGF-BB versus the PEI-containing groups. Defects treated with sustained PDGF gene delivery demonstrated delayed healing coupled with sustained inflammatory cell infiltrates lateral to the osseous defects. Continuous PDGF-BB production by nonviral gene therapy could have delayed bone healing. This nonviral gene delivery system in this model appeared to prolong inflammatory response, slowing alveolar bone regeneration in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J Periodontol 2015; 86: 611–622.

    Article  Google Scholar 

  2. Hajishengallis G . Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol 2015; 15: 30–44.

    Article  CAS  Google Scholar 

  3. Kao RT, Nares S, Reynolds MA . Periodontal regeneration—intrabony defects: a systematic review from the AAP Regeneration Workshop. J Periodontol 2015; 86: S77–S104.

    Article  Google Scholar 

  4. Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B et al. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 2015; 31: 317–338.

    Article  CAS  Google Scholar 

  5. Lin Z, Rios HF, Cochran DL . Emerging regenerative approaches for periodontal reconstruction: a systematic review from the AAP Regeneration Workshop. J Periodontol 2015; 86: S134–S152.

    Article  Google Scholar 

  6. Nevins M, Giannobile WV, McGuire MK, Kao RT, Mellonig JT, Hinrichs JE et al. Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J Periodontol 2005; 76: 2205–2215.

    Article  CAS  Google Scholar 

  7. Kaigler D, Avila G, Wisner-Lynch L, Nevins ML, Nevins M, Rasperini G et al. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther 2011; 11: 375–385.

    Article  CAS  Google Scholar 

  8. Hollinger JO, Hart CE, Hirsch SN, Lynch S, Friedlaender GE . Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am 2008; 90: 48–54.

    Article  Google Scholar 

  9. Cochran DL, Cobb CM, Bashutski JD, Chun YH, Lin Z, Mandelaris GA et al. Emerging regenerative approaches for periodontal reconstruction: a consensus report from the AAP Regeneration Workshop. J Periodontol 2015; 86: S153–S156.

    Article  Google Scholar 

  10. Elangovan S, Karimbux N . Review paper: DNA delivery strategies to promote periodontal regeneration. J Biomater Appl 2010; 25: 3–18.

    Article  CAS  Google Scholar 

  11. Nayerossadat N, Maedeh T, Ali PA . Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1: 27.

    Article  Google Scholar 

  12. Jin Q, Anusaksathien O, Webb SA, Printz MA, Giannobile WV . Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors. Mol Ther 2004; 9: 519–526.

    Article  CAS  Google Scholar 

  13. Chang PC, Cirelli JA, Jin Q, Seol YJ, Sugai JV, D'Silva NJ et al. Adenovirus encoding human platelet-derived growth factor-B delivered to alveolar bone defects exhibits safety and biodistribution profiles favorable for clinical use. Hum Gene Ther 2009; 20: 486–496.

    Article  CAS  Google Scholar 

  14. Margolis DJ, Morris LM, Papadopoulos M, Weinberg L, Filip JC, Lang SA et al. Phase I study of H5.020CMV.PDGF-beta to treat venous leg ulcer disease. Mol Ther 2009; 17: 1822–1829.

    Article  CAS  Google Scholar 

  15. Evans CH . Gene delivery to bone. Adv Drug Deliv Rev 2012; 64: 1331–1340.

    Article  CAS  Google Scholar 

  16. Luo D, Saltzman WM . Synthetic DNA delivery systems. Nat Biotechnol 2000; 18: 33–37.

    Article  CAS  Google Scholar 

  17. Abbas AO, Donovan MD, Salem AK . Formulating poly(lactide-co-glycolide) particles for plasmid DNA delivery. J Pharm Sci 2008; 97: 2448–2461.

    Article  CAS  Google Scholar 

  18. Elangovan S, D'Mello SR, Hong L, Ross RD, Allamargot C, Dawson DV et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials 2014; 35: 737–747.

    Article  CAS  Google Scholar 

  19. Lungwitz U, Breunig M, Blunk T, Göpferich A . Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005; 60: 247–266.

    Article  CAS  Google Scholar 

  20. Intra J, Salem AK . Characterization of the transgene expression generated by branched and linear polyethylenimine-plasmid DNA nanoparticles in vitro and after intraperitoneal injection in vivo. J Control Release 2008; 130: 129–138.

    Article  CAS  Google Scholar 

  21. Martello F, Piest M, Engbersen JF, Ferruti P . Effects of branched or linear architecture of bioreducible poly(amido amine)s on their in vitro gene delivery properties. J Control Release 2012; 164: 372–379.

    Article  CAS  Google Scholar 

  22. Neuberg P, Kichler A . Recent developments in nucleic acid delivery with polyethylenimines. Adv Genet 2014; 88: 263–288.

    Article  CAS  Google Scholar 

  23. Scherer F, Schillinger U, Putz U, Stemberger A, Plank C . Nonviral vector loaded collagen sponges for sustained gene delivery in vitro and in vivo. J Gene Med 2002; 4: 634–643.

    Article  CAS  Google Scholar 

  24. Tyrone JW, Mogford JE, Chandler LA, Ma C, Xia Y, Pierce GF et al. Collagen-embedded platelet-derived growth factor DNA plasmid promotes wound healing in a dermal ulcer model. J Surg Res 2000; 93: 230–236.

    Article  CAS  Google Scholar 

  25. Berry M, Gonzalez AM, Clarke W, Greenlees L, Barrett L, Tsang W et al. Sustained effects of gene-activated matrices after CNS injury. Mol Cell Neurosci 2001; 17: 706–716.

    Article  CAS  Google Scholar 

  26. Patino MG, Neiders ME, Andreana S, Noble B, Cohen RE . Collagen as an implantable material in medicine and dentistry. J Oral Implantol 2002; 28: 220–225.

    Article  Google Scholar 

  27. Fang J, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci USA 1996; 93: 5753–5758.

    Article  CAS  Google Scholar 

  28. Bonadio J, Smiley E, Patil P, Goldstein S . Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 1999; 5: 753–759.

    Article  CAS  Google Scholar 

  29. Bolander ME . Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 1992; 200: 165–170.

    Article  CAS  Google Scholar 

  30. Battegay EJ, Rupp J, Iruela-Arispe L, Sage EH, Pech M . PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biol 1994; 125: 917–928.

    Article  CAS  Google Scholar 

  31. Anusaksathien O, Webb SA, Jin QM, Giannobile WV . Platelet-derived growth factor gene delivery stimulates ex vivo gingival repair. Tissue Eng 2003; 9: 745–756.

    Article  CAS  Google Scholar 

  32. Jiranek WA, Machado M, Jasty M, Jevsevar D, Wolfe HJ, Goldring SR et al. Production of cytokines around loosened cemented acetabular components. Analysis with immunohistochemical techniques and in situ hybridization. J Bone Joint Surg Am 1993; 75: 863–879.

    Article  CAS  Google Scholar 

  33. Pinheiro ML, Feres-Filho EJ, Graves DT, Takiya CM, Elsas MI, Elsas PP et al. Quantification and localization of platelet-derived growth factor in gingiva of periodontitis patients. J Periodontol 2003; 74: 323–328.

    Article  CAS  Google Scholar 

  34. Salcetti JM, Moriarty JD, Cooper LF, Smith FW, Collins JG, Socransky SS et al. The clinical, microbial, and host response characteristics of the failing implant. Int J Oral Maxillofac Implants 1997; 12: 32–42.

    CAS  PubMed  Google Scholar 

  35. Yu X, Hsieh SC, Bao W, Graves DT . Temporal expression of PDGF receptors and PDGF regulatory effects on osteoblastic cells in mineralizing cultures. Am J Physiol 1997; 272: C1709–C1716.

    Article  CAS  Google Scholar 

  36. Saygin NE, Tokiyasu Y, Giannobile WV, Somerman MJ . Growth factors regulate expression of mineral associated genes in cementoblasts. J Periodontol 2000; 71: 1591–1600.

    Article  CAS  Google Scholar 

  37. Hsieh SC, Graves DT . Pulse application of platelet-derived growth factor enhances formation of a mineralizing matrix while continuous application is inhibitory. J Cell Biochem 1998; 69: 169–180.

    Article  CAS  Google Scholar 

  38. Marzouk KM, Gamal AY, Al-Awady AA, Sharawy MM . Platelet-derived growth factor BB treated osteoprogenitors inhibit bone regeneration. J Oral Implantol 2008; 34: 242–247.

    Article  Google Scholar 

  39. Evans CH . Gene therapy for bone healing. Expert Rev Mol Med 2010; 12: e18.

    Article  Google Scholar 

  40. Zhang Z, Chen J, Jin D . Platelet-derived growth factor (PDGF)-BB stimulates osteoclastic bone resorption directly: the role of receptor beta. Biochem Biophys Res Commun 1998; 251: 190–194.

    Article  CAS  Google Scholar 

  41. Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Griffin GL, Senior RM et al. Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. J Cell Biol 1989; 109: 429–440.

    Article  CAS  Google Scholar 

  42. Kubota K, Sakikawa C, Katsumata M, Nakamura T, Wakabayashi K . Platelet-derived growth factor BB secreted from osteoclasts acts as an osteoblastogenesis inhibitory factor. J Bone Miner Res 2002; 17: 257–265.

    Article  CAS  Google Scholar 

  43. Anusaksathien O, Jin Q, Zhao M, Somerman MJ, Giannobile WV . Effect of sustained gene delivery of platelet-derived growth factor or its antagonist (PDGF-1308) on tissue-engineered cementum. J Periodontol 2004; 75: 429–440.

    Article  CAS  Google Scholar 

  44. Costa Ade M, Kobayashi GS, Bueno DF, Martins MT, Ferreira Mde C, Passos-Bueno MR et al. [An experimental model for the study of craniofacial deformities]. Acta Cir Bras 2010; 25: 264–268.

    Article  Google Scholar 

  45. Sculean A, Chapple IL, Giannobile WV . Wound models for periodontal and bone regeneration: the role of biologic research. Periodontol 2000 2015; 68: 7–20.

    Article  Google Scholar 

  46. Gomes PS, Fernandes MH . Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim 2011; 45: 14–24.

    Article  CAS  Google Scholar 

  47. Park CH, Rios HF, Jin Q, Sugai JV, Padial-Molina M, Taut AD et al. Tissue engineering bone-ligament complexes using fiber-guiding scaffolds. Biomaterials 2012; 33: 137–145.

    Article  CAS  Google Scholar 

  48. Jin QM, Anusaksathien O, Webb SA, Rutherford RB, Giannobile WV . Gene therapy of bone morphogenetic protein for periodontal tissue engineering. J Periodontol 2003; 74: 202–213.

    Article  CAS  Google Scholar 

  49. Schneider CA, Rasband WS, Eliceiri KW NIH Image to ImageJ: 25 years of image analysisNat Methods 2012; 9: 671–675.

Download references

Acknowledgements

This study was supported by NIH/NIDCR DE 13397 (WVG), NIH/NIDCR DE024206 (SE and AKS) and the Lyle and Sharon Bighley Professorship (AKS). We thank Mr Anh-Vu Do (University of Iowa College of Pharmacy, Iowa City) for his assistance in plasmids expansion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Elangovan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plonka, A., Khorsand, B., Yu, N. et al. Effect of sustained PDGF nonviral gene delivery on repair of tooth-supporting bone defects. Gene Ther 24, 31–39 (2017). https://doi.org/10.1038/gt.2016.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.73

This article is cited by

Search

Quick links