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The accessible and immune-privileged environment of the eye
makes it ideal for gene therapy. It has been 8 years since
successful gene therapy was first reported for patients with an
inherited form of progressive retinal degeneration (RD), Leber
Congenital Amaurosis (LCA2), following treatment in one eye
with AAV2-RPE65.1–3 Now, Bennett et al.4 have reported improved
vision without adverse effects, such as immunogenicity, following
treatment of the second eye with AAV2-RPE65, in children with
LCA2. These results strongly support the use of in situ gene
therapy in patients who can be treated prior to the onset of RD.
Paramount to this approach is the early identification of patients,

before the retina has undergone any irreversible changes. While most
forms of RD are detected only after significant retinal pathogenesis,
Usher syndrome types 1 and 2 present congenital deafness that
facilitates genetic identification of the disease in infancy; Usher 1
patients are born profoundly deaf and Usher 2 patients are insensitive
to high frequencies.5 Nowadays, the deafness can be treated with
cochlear implants, and genetic testing of deaf infants is used to
identify Usher syndrome and thus predict ensuing RD.
The first retinal gene therapy studies with Usher genes were

carried out using lentiviral (LV) delivery of MYO7A, the gene
responsible for Usher syndrome 1B (USH1B). MYO7A is present in
both the photoreceptor and retinal pigment epithelial (RPE) cells6

(Figure 1a). Injection of LV-MYO7A into the subretinal space of
Myo7a-deficient mice was found to correct mutant phenotypes in
both these cell types.7 A phase I/II clinical trial, using LV-MYO7A to
treat RD in USH1B, has been under way since 2012 (https://
clinicaltrials.gov/ct2/show/NCT01505062).
Because the MYO7A coding sequence is 6.7 kb, it was thought

that a viral vector such as LV was needed for delivery, since it
features a larger carrying capacity than the reported maximum of
5 kb for adeno-associated virus (AAV). However, more recently, it
was found that use of AAV, including AAV2, as used in the LCA2
treatments, mentioned above, resulted in WT levels of MYO7A and
correction of retinal phenotypes in mutant mice.8–10

A significant body of research has now demonstrated that
oversized AAV genomes can be packaged into high titer AAV as 5`
truncated sense and anti-sense genomes, termed fragmented
vectors (fAAV). The truncated genomes are efficiently reas-
sembled, with high fidelity, into the full transgene product
following transduction of target cells, as a result of recombination
that is biased towards homologous recombination (HR) rather

than non-homologous end joining (NHEJ)11–13 (Figure 1b).
Oversized gene replacement therapy, using fAAV expressing
MYO7A cDNA, not only demonstrated reconstitution of the intact
transgene product in vivo but also reported more reliable
phenotypic correction of the underlying mutation than a dual
AAV vector expression system.9 Similar success was also reported
for fAAV expressing a 7.5 kb dysferlin transgene.14 Recently, an
optimized dual vector system was shown to be comparable to
fAAV vectors in a mouse model of Stargardt’s RD.15 There is an
ongoing debate over which AAV system is the best for delivery of
large transgenes.10,14,16 However, it is likely that many factors,
including the transgene sequence and the epigenetic and
transcriptional state of the target tissue will influence the success
of each approach.
Despite the promise of gene augmentation therapy for genetic RDs,

this approach is not amenable for a gene whose functional cDNA is
very large, or which expresses multiple essential isoforms. All the Usher
genes have been reported to express multiple isoforms, although their
relative importance in the human retina is unknown (Table 1). The
expression of two major isoforms of MYO7A in the human retina17 is a
concern for the current USH1B clinical trial, which is using the
single cDNA that was generated in the original mouse studies.7 This
isoform corrects mouse retinal phenotypes,7,9 but the relative isoform
expression may differ between mouse and human retinas.
Direct targeting of genetic mutations can overcome these

limitations. Recently, antisense oligonucleotides (ASOs) were used
to correct a splice-site mutation in CEP290, a large gene defective
in another form of LCA, and whose protein, like most of the Usher
proteins, functions in the photoreceptor cilium.18 Similarly, ASOs
were used to target a cryptic splice site in the orthologue of
USH1C, thereby rescuing hearing and vestibular functions in a
mouse model for USH1C.19 ASOs are limited, however, to diseases
amenable to repair by blocking translation or a specific splice site.
Other mutations can potentially be repaired by gene editing

strategies, including the clustered, regularly interspaced, palindromic
repeats (CRISPR)-associated (Cas) system, which has revolutionized
the field of genomic engineering since its introduction.20 Adapted
from the microbial immune system, this technology uses a short
guide RNA to target the Cas endonuclease to a specific locus in the
genome. The Cas endonuclease can then generate double-stranded
breaks in the DNA, which can be repaired by one of the two
mechanisms: (1) NHEJ, an error-prone process that often results in
insertions or deletions, or (2) homology-directed repair (HDR), which
requires a repair template to introduce modifications to the targeted
genetic locus.21 NHEJ occurs at a higher frequency, while HDR is
more suitable for repairing mutations. Recent RD studies
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Figure 1. Retinal gene therapy strategies for genes defective in Usher syndrome. (a) Diagram of a photoreceptor cell and an RPE cell. Most Usher
proteins are associated with the connecting cilium or periciliary membrane. Usher 1 proteins are also present in calycal processes. However, the
Usher 1B protein, MYO7A, is most abundant in the RPE. (b) Schematic illustrating an overview of large genome fragmentation and subsequent full-
length genome reconstitution for the AAV2-MYO7A fAAV vector. (c) Examples of AAV vector-mediated approaches for gene therapy, resulting from
defects in large, very large or alternatively spliced genes (ITR, inverted terminal repeat; pA, polyadenylation signal; smCBA, small chicken beta-actin
promoter; SD, splice donor; SA, splice acceptor).
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demonstrated correction of rd1 via CRISPR-mediated HDR of mutant
mouse zygotes,22 and allele-specific ablation of a dominant mutant
allele of Rho by CRISPR-mediated NHEJ with neonatal mice.23

Viral delivery of CRISPR-Cas components offers high transduction
efficiency, limited only by the size of the donor HDR template with
respect to viral capacity (see above). HDR is currently also limited by
its low efficiency, especially in post-mitotic cells.24 Nonetheless, the
observation that an oversized AAV genome is regenerated in vivo by
photoreceptor and RPE cells9,10 indicates the presence of HDR in
these cell types,11,13,25 and corroborates previous work, demonstrat-
ing HDR in developed adult photoreceptors.26

One strategy to help overcome limitations of HDR is to take
advantage of different classes of CRISPR-Cas systems. For example,
unlike the commonly used Cas9, the endonuclease Cpf1 generates
staggered cuts with 5` overhangs.27 The resulting cleavage could
mediate the insertion of a DNA fragment to correct a mutation by
NHEJ, the more dominant repair mechanism. Another strategy is
to use homology-independent targeted integration (HITI),
whereby the nuclease cuts both donor and genomic DNA,
resulting in ligation of the donor fragment into a genomic locus
using NHEJ. This approach has been demonstrated very recently
in a study that included in vivo gene editing of the Mertk gene,
which is expressed in the RPE and is essential for ingestion of the
photoreceptor outer segment disks by the RPE. The HITI-edited
gene resulted in morphological and physiological repair that was
more significant than that obtained using an HDR-based
approach.28

Novel innovations in the field of gene editing will provide
opportunities to optimize gene repair for RDs, however, a genetic
model with well-characterized cellular phenotypes would be useful to
test and optimize the efficiency of gene editing. Among RDs, the
cellular phenotypes resulting from loss of MYO7A in mutant mouse
retinas have been particularly well characterized. These phenotypes,
such as melanosome localization in the RPE29 and opsin concentra-
tion in the proximal photoreceptor cilium,30 can be scored on a cell-
by-cell basis,9,31 thus giving a direct readout of efficiency, making
them potentially useful in optimization studies.
In conclusion, because patients with Usher syndrome are

typically identified before RD begins, they are particularly suitable
for gene therapy approaches. Preclinical tests are needed to
determine if only one isoform is essential to prevent RD; in this
case, all but 2 or 3 of the largest genes would appear suitable for
augmentation by AAV, fAAV or dual AAV vector delivery of a single
cDNA. Subtypes that are associated with a very large gene (USH2A
and 2C) or more than one essential retinal isoform represent
appropriate candidates for testing AAV vectors in the context of
new gene-editing strategies (Table 1; Figure 1c).
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