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Could interallelic interactions be a key to the epigenetic
aspects of fitness-trait inbreeding depression?
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Inbreeding depression is currently thought to result mainly from the
expression of recessive deleterious alleles combined with ‘inbreeding
� environment’ interactions (Charlesworth and Willis, 2009). Recent
experiments and discussion have, however, revitalized the old idea
that epigenetic processes also impact on the phenotypic variation of
complex traits and embryo development in inbred individuals
(Biémont, 2010; Cheptou and Donohue, 2012; Vergeer et al., 2012;
Schmitz et al., 2013; Liebl et al., 2013). However, further experiments
are required if we are to decipher the precise mechanisms that underly
the inbreeding/epigenetic relationship. Recent findings suggest that in
addition to DNA methylation, histone modification and chromatin
changes, paternal–maternal chromosomal complement interactions,
and differential effects of transposable element (TE) expression on
host gene regulation and developmental processes may impact on
inbreeding depression during the development of eukaryotic organ-
isms. We therefore suggest as a first approach that crosses involving
sibs, father–daughter or mother–son could be used, as these have been
shown in Drosophila to lead to different effects during the develop-
ment, even though they theoretically result in the same inbreeding
coefficient (Biémont, 1972, 1974, 1991). Whereas father–daughter
crosses affected larvo-pupal viability, mother–son crosses increased
only embryonic mortality, and brother–sister crosses increased both
embryonic and larvo-pupal mortality rates. Because all these three
kinds of crosses involve parental chromosomal sets of various
different origins (a father, a mother or a brother/sister), it has been
postulated that the maternal and paternal sets of chromosomes might
differ as a result of some epigenetic process, so that their interactions
during embryo development lead to distinct inbreeding effects
(Biémont, 1974).

Some regions of the imprinted loci (the expression of imprinted
genes depends on their parent-of-origin) are methylated differently in
maternal and paternal alleles (Miyazaki et al., 2009). These differentially
methylated regions (DMRs) are involved in the paternal or maternal
control of the regulation of specific genes, and consequently they lead
to allelic differences between individuals who may subsequently be
transmitted down the generations. It is now well known that in many
organisms both maternal and paternal genomes, which exhibit different
epigenetic compositions, contribute to the formation of a viable zygote
and its subsequent development (Meehan et al., 2005).

The parent-of-origin expression of the imprinting genes is regu-
lated by specific regions known as imprinting control regions (ICRs).
These ICRs acquire their DNA methylation pattern in the male germ
line, and the paternal imprint is protected from demethylation in the
paternal genome of the zygote. The methylated imprint is thus
maintained throughout the development (Kacem and Feil, 2009) in
the somatic cell lineage. One important characteristic of these ICRs

is that the maternally methylated ICRs can either exert promoter
activity on the paternal allele or silence it (Haun et al., 2009). This
kind of interallelic talk resembles the paramutations that have been
reported in plants and in the mouse, and more recently in Drosophila
(de Vanssay et al., 2012). In these paramutations the two parent-of-
origin alleles can influence one another’s expression; these epigenetic
modifications are known to be transmitted to the offspring, and have
been shown to be triggered by changing epigenetic states of TEs in
maize (Goettel and Messing, 2013). In addition to interallelic talk,
paternal and maternal effects that influence the phenotype of the
offspring have been reported in both Drosophila and mammals. These
effects also involve epigenetic information that is inherited across
generations (Chong et al., 2007).

Imprinted genes often contain repeated sequences that include TEs
or their remnants (Park et al., 2012). These sequences recruit the
epigenetic machinery, and mark the DMRs and ICRs, thus determin-
ing the epigenetic status of the affected alleles. Because TEs are known
to be able to modulate gene expression, and regulate host genes
differentially during the embryonic development (Peaston et al.,
2004), many changes in individual phenotypes are to be expected.
This is consistent with the report that epigenetic processes, which
involve chromatin remodeling proteins that control TE expression,
may contribute to the loss of fitness due to inbreeding in Arabidopsis
(Kakutani et al., 1996). There is also evidence that some imprinting
genes are acquired from retrotransposons and that retrotransposon
silencing by DNA methylation can drive genomic imprinting in
mammals and in plants (see Gifford et al. (2013) for a review).

The possibility that TE RNAs could contribute to various cell
processes has recently been suggested by the observation that some
retrotransposons produce differential regulation of host genes, and
affect development processes in mouse oocytes and preimplantation
embryos (Peaston et al., 2004). This observation suggests that TEs
may have an important role in genome remodeling during the early
embryo cleavage stage. Some TEs display different patterns of
expression in the maternal and paternal genomes (Josefsson et al.,
2006), which implies that TEs must have an important role in
deciding the fate of the two parental sets of chromosomes during the
early stages of development, and that RNA derived from TEs could be
involved in controlling embryo development (Simonelig, 2011).
Josefsson et al. (2006) have proposed a model of the activation of
silent genes in hybrid crosses in Arabidopsis, in which the two parents
contribute differing amounts of repressive factors and of the target
sites required for fertility. The TE, ATHILA, has been shown to be
involved in this phenomenon.

We propose that interallelic interactions could explain the differ-
ential effects reported above, which are seen in the various inbred
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crosses observed during the early and late stages of development in
Drosophila. Brother–sister, father–daughter and mother–son crosses,
and other kind of inbred crosses, could therefore be used in various
organisms to investigate the early processes involved during embry-
ogenesis, and to decipher the precise roles of the two chromosomal
complements, the interactions between them and their links with TE
silencing and RNA-directed DNA methylation in the context of
inbreeding.
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