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Saline-alkali plant endophytes similar as marine mangrove plant-
derived ones are a big member of microbes inhabiting in tissues of
plants without causing obvious disease to their hosts, and they must
adapt to the extreme environment of high osmolarity and nutrient
deprivation in plant, which are different from terrestrial plant
endophytes. Owing to the unique bio-environments, endophytes
originated from mangrove plants are being considered as a new
resource of natural product research and diverse secondary metabo-
lites with a wide range of bioactivities have been isolated.1–3 Compared
with those of marine mangrove plant-derived endophytes, chemical
investigation of saline-alkali plant-derived endophytic fungi have just
begun, and only several natural products were isolated from these
unique environmental fungi.4-7Suaeda salsa L., an important model
halophytic plant, is distributed at different saline-alkali soil especially
at seaside. This plant possesses the ability to absorb salt from saline
soils and accumulate them in the plant tissues. Some results revealed
that the total salt contents in shoot and root were 23–27% and
10–12%, respectively.8 During our ongoing chemical investigation
from unique fungal species as sources of new bioactive natural
products, a halo-tolerant endophytic fungus Eurotium rubrum isolated
from salt-tolerance wild plant S. salsa L. collected from ‘BoHai’ seaside
was chosen to chemical investigation. Previous reports revealed that
E. rubrumwas frequently isolated from mangrove plants, and different
secondary metabolites with a wide range of bioactivities have been
isolated from this endophytic fungus.9–13 Purification of the solid
culture extract of this fungus led to isolate a new anthraquinone
named rubrumol (1) with poly-hydroxyl groups together with four
known analogs catenarin (2),14 rubrocristin (3),15 emodin (4)16 and
2-methyleurotinone (5).15 In this paper, the structural elucidation for
the new compound rubrumol (1) (Figure 1) and bioactivities for
compounds 1–5 were present. Several errors on the coupling constants
of the known coniothyrinone A (6) were pointed out in this note.17

The molecular formula of rubrumol (1) was determined to be
C15H16O5 (8 degrees of unsaturation) on the basis of HRESIMS
analysis (m/z 299.0889 [M+Na]+; Δ–0.1 mmu). Analysis of the
1H, 13C and HMQC NMR data of 1 (Table 1) revealed the presence
of four exchangeable proton (in which one hydroxyl group might
form one intramolecular hydrogen-bond on account of its chemical
shift value at δH 11.82 p.p.m.), one methyl group connected with
double bond or phenyl ring (δH 2.33 p.p.m.), five methines (three
oxygenated), eight olefinic or aromatic carbons (4 of which are
protonated) and one keto group carbon (δC 205.2 p.p.m.). These data
accounted for all the 1H and 13C NMR resonances and required 1 to
contain three rings. Interpretation of the 1H–1H COSY NMR data of 1
identified one isolated proton spin-systems corresponding to the C-10
(10-OH)–C-10a–C-5–C-6–C-7(7-OH)–C-8(8-OH)–C-8a–C-10a frag-
ment (Figure 1), which formed one cyclohexene ring (C ring). Owing
to the effect of double bond and aromatic ring, the weak allylic even
homoallylic coupling relationships were observed in the 1H–1H COSY
NMR spectra, such as the cross peaks of 3-Me with H-2 and H-4, of
H-4 with H-10, of H-5 with H-7, of H-6 with H-10a (allylic coupling
relationship) and of H-7 with H-10a (homoallylic coupling relation-
ship), which made the 1H NMR spectrum more complex. The
remaining connection was established by HMBC correlations
(Figure 1). The hydroxyl group (δH 11.82 p.p.m.) was attached at
C-1 due to the correlations of 1-OH with C-1, C-2 and C-9a, whereas
the 3-methyl unit was connected with C-3 by its correlations with C-2,
C-3 and C-4. The correlations from H-2 to C-1, C-4 and 3-Me and
from H-4 to C-2, C-4a and C-9a revealed the existence of one 1,3,5,6-
tetra-substituted aromatic ring (A ring) with one hydroxyl group and
one methyl unit anchored at C-1 and C-3, respectively. The W-type
long ranged correlation from H-2 and H-4 to C-9 displayed that C-9
was connected with C-9a, and this was consistent with the formation
of the intramolecular hydrogen-bond by the keto group (C-9) with
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1-OH leading to the downfield chemical shift value of the hydroxyl
group proton (δH 11.82 p.p.m.). The cross peaks of H-10 with C-4,
C-9a, of H-4 with C-10 and especially of 10-OH with C-4a in the
HMBC spectra confirmed that C-4a was connected with C-10. The
correlations from H-8 and H-8a to C-9 confirmed that the keto group
(C-9) was connected with C-8a. Thus the planar structure for
compound 1 was determined, which revealed the same planar
structure as that of coniothyrinone A (6).17 Yet, the significant

difference of 1H NMR spectrum (in DMSO-d6) especially the coupling
constants suggested their differently relative configuration.
Coupling constants analysis to determine the relative configurations

was often used in structural elucidation of natural products. The large
coupling constants between H-10 and H-10a (J= 11.4 Hz), between
H-10a and H-8a (J= 11.4 Hz), between H-8a and H-8 (J= 10.2 Hz)
and between H-8 and H-7 (J= 7.2 Hz), implied that H-7, H-8a and
H-10 were on the same side of C ring, whereas H-8 and H-10a
possessed the opposite orientation on the other of C ring. This
information implied that the small groups such as H-7, H-8, H-8a,
H-10a and H-10 were placed on the axial bonds, whereas the big
groups 7-OH, 8-OH and 10-OH were placed on equatorial bonds,
which demonstrated the trans-annulation of B and C rings. The
relative configuration of 1 was further confirmed by NOESY correla-
tion from H-8a to H-7 and H-10 and from H-10a to H-8 and 10-OH
(Figure 1). Thus the relative configuration for 1 was determined.
Modified Mosher’s reaction was tried to determine the absolute
configuration of 1,18 but several products were formed during the
reaction, which made it very difficult to isolate the target products
with limited amount and impurity.
Electronic circular dichroism has been recognized as a rapid and

reliable method to assign absolute configuration of chiral molecules,
especially, with the aid of quantum-chemical calculation using time-
dependent density functional theory, and electronic circular dichroism
method has been widely applied in recent years.19–21 The MMFF94
conformational analysis of 1 only gave two conformers, which
differs only in the orientation of hydrogen atoms and the hydroxyl
groups. Further optimization in the density functional theory frame-
work verified the existence of two conformers, and the privileged
conformer coincided with the NMR data. As indicated in
Supplementary Figure S7, the predicted electronic circular dichroism
spectra of the (7S, 8S, 8aR, 10R, 10aS)-enantiomer were in good
match with the experimental data between 200 and 400 nm.
Therefore, the absolute configuration of compound 1 was established
as (7S, 8S, 8aR, 10R, 10aS).
When analyzing the relative configuration of 1 and 6, we found that

there were several errors about the coupling constants of

Figure 1 (a) Structures of compounds 1–6; (b) 2D NMR of 1. A full color version of this figure is available at The Journal of Antibiotics journal online.

Table 1 Comparison of NMR data between 1 and 6 (in DMSO-d6)

Compound (1) Coniothyrinone A (6 )

No. δHa, (J in Hz) δCb, type δHa, (J in Hz) δCb, type

1 160.2 163.3, s

2 6.69, s 115.1, CH 6.73, s 118.3, d

3 147.2 150.0, s

4 7.03, s 117.8, CH 6.80, s 122.6, d

4a 148.1 146.2, s

5 5.94, dd (2.4, 10.2) 125.0, CH 5.67, s 128.8, d

6 5.61, dd (2.4, 10.2) 130.4, CH 5.67, s 132.1, d

7 4.00, m 71.0, CH 4.18, br.s 73.6, d

8 3.86, ddd (1.8, 7.2,

10.2)

71.2, CH 4.05, dd (10.3,

3.0)

74.5, d

8a 2.78, dd (10.2, 11.4) 49.4, CH 3.29, dd (10.3,

9.2)

45.6, d

9 205.2 208.8, s

9a 112.8 113.9, s

10 4.41, dd (8.4, 11.4) 69.6, CH 4.85, br.s 69.3, d

10a 2.57, br. t (11.4) 44.8, CH 2.97, dt (9.2, 2.6) 44.2, d

3-Me 2.33, s 21.1, CH3 2.34, s 22.0, CH3

1-OH 11.82, s 11.89, s

7-OH 5.12, d (6.0) 4.12, s

8-OH 4.86, d (1.8) 4.72, s

10-OH 5.96, d (8.4) 4.56, s

Anthraquinones from Eurotium rubrum
Y Zhang et al

1139

The Journal of Antibiotics



coniothyrinone A (6). The coupling constant of H-7 and H-8 in 6 was
3.0 Hz (Supplementary Figure S8), implying that both these two
protons should possess equatorial bonds, whereas the authors placed
these two protons on the axial positions. In theory, the coupling
constant between axial–axial protons are 6.0–8.0 Hz, and the coupling
constant between equatorial–equatorial protons are 2.0–4.0 Hz. In
addition, if the H-7 was put on the equatorial bond, the NOESY
correlation between H-7 and H-8a could not be observed. Yet there
was NOESY correlation between those two protons in the paper. This
implied that the coupling constant of H-7 and H-8 (J= 3.0 Hz) was
not right. All the discrepancies in the paper by Sun et al.17 might have
originated from the bad quality of 1H NMR spectrum, in which so
many broad singlet or multiplets interfered the authors to correctly
analyze the coupling constants of structure 6.
The biological effect of rubrumol (1) and its derivatives 2–5 on

Topo I to relax supercoiled pBR322 DNA were investigated in the
cleavable complex assay (Figure 2). The results presented in Figure 2a
indicated that only compound 1 displayed biological activity com-
pared with the positive control camptothecin. As shown in Figure 2b,
the relaxation activity of rubrumol (1) was stronger than that of
camptothecin at the concentration (100 μM). Furthermore, the
decreasing concentrations of 1 were tested about the effect on
relaxation activity (Figure 2c), and the IC50 value of the inhibition
of Topo I relaxation activity was 23 μM (lane 1). The band backward
shifting and trailing ofrubrumol (1) was observed in lanes 3–6 at 100,
50, 10, 5 and 1 μM. The mechanism of action of rubrumol (1) on
DNA was under ongoing. Rubrumol (1) was also assessed for
cytotoxic activities against A549, MDA-MB-231, PANC-1 and HepG2
human cancer cell lines by the MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) method. The inhibition rate for 1
against these 4 cancer cell line were o 60% at 100 μg ml− 1, which
implied that 1 displayed no significant cytotoxic activities. Com-
pounds 2–5 were also tested cytotoxicity against A549, MDA-
MB-231, PANC-1 and HepG2 human cancer cell lines by the MTT
method without bioactivity.

Anthraquinones are one big member of secondary metabolites
biosynthesized by polyketide pathway. There are some reports
about hydroanthroqiunones, such as fusaranthraquinone,22 tetrahy-
droaltersolanols C− F,23 dihydroaltersolanol A,24 4a-epi-9α-
methoxydihydrodeoxybostrycin24 and 10-deoxybostrycin,24 most of
which were hydrogenated in the C-ring. Anthraquinones displayed a
wide range of bioactivities such as antibacterial, antifungal, antimyco-
bacterial, antimalarial and cytotoxic activities,1–3,22–24 while there was
no report about anthraquinones against topoisomerase I inhibitory
activity. Though our work cannot explain the detailed ecological role
of E. rubrum and interaction of the endophytic fungus with its host
S. salsa L., the result in our experiment diversified the chemical
structure of anthraquinones and also first found that this group of
secondary metabolites displayed topoisomerase inhibitory activity,
which implied that endophytic fungi from salt-tolerance plants might
be one new reservoir for natural product chemistry in future.
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