A three-component coupling approach to the ACE-ring substructure of C19-diterpene alkaloids

Kosuke Minagawa, Daisuke Urabe and Masayuki Inoue

Abstract

C19-diterpene alkaloids are a class of alkaloids with pharmacologically important activities having an intricately fused hexacyclic ABCDEF-ring system. Here we report expeditious assembly of the ACE-ring substructure 4 a by applying a three-component coupling strategy. A radical-polar crossover reaction between an AE-ring radical precursor, a C-ring radical acceptor and an aldehyde was realized by the actions of $\mathrm{Et}_{3} \mathrm{~B}$ and O_{2}, resulting in the installation of three new stereocenters and extension of the carbon chain corresponding to the B -ring. As the ACE-ring 4a possesses the correct $\mathrm{C} 4,11$-quaternary and C 10 -tertiary carbons, 4a would serve as an advanced intermediate for constructing the entire C19-diterpene alkaloid structures. The Journal of Antibiotics (2018) 71, 326-332; doi:10.1038/ja.2017.69; published online 14 June 2017

INTRODUCTION

C19-diterpene alkaloids are a class of natural products present in the plants of the genera Aconitum and Delphinium, and many exhibit pharmacologically important biological activities. ${ }^{1}$ The structures of talatisamine and puberuline C are depicted in Scheme la as representative examples. The intricately fused hexacyclic ABCDEFring system of the C19-diterpene alkaloids has inspired chemists to invent synthetic methods for their assembly, ${ }^{2-6}$ culminating in the full chemical construction of several members of this family. ${ }^{7-11}$ Recently, we successfully synthesized the ABCDE-ring system ${ }^{12}$ of talatisamine and the ABCDEF-ring system ${ }^{13}$ of puberuline C based on our development of a new radical-based strategy. In these synthetic studies, a C11-bridgehead radical of the AE-ring moiety undergoes cyclization with the C-ring enone to form a seven-membered B-ring. The success of the intramolecular C11-radical addition led us to explore its intermolecular version, because intermolecular multicomponent reactions generally ensure more convergent, and thus more efficient, approaches to complex molecular architectures. ${ }^{14-19}$ Here we report the three-component coupling reaction between the bicyclic AE-ring, the 5 -membered C -ring and the $\mathrm{C} 6-8$ carbon chain to assemble the ACE-ring substructure $4 \mathbf{a}$ with the correct C4,11-quaternary and C10-tertiary carbons in a single step (Scheme 1b).

RESULTS AND DISCUSSION

We previously realized a three-component reaction between $\mathbf{2 a}, \mathbf{3 b}$ and O, Te-acetal 5 using a reagent combination of $\mathrm{Et}_{3} \mathrm{~B}$ and O_{2} (Scheme 1c). ${ }^{20,21}$ Treatment of O, Te-acetal 5 with $\mathrm{Et}_{3} \mathrm{~B} / \mathrm{O}_{2}$ generated the highly reactive bridgehead radical species D^{22-26} that sequentially coupled with α, β-unsaturated ketone $\mathbf{2 a}$ and aldehyde $\mathbf{3 b}$ via a radicalpolar crossover mechanism to provide adduct 6. This method intermolecularly connected the three simple units with stereoselective
installation of the three new stereocenters, and thus significantly increased the molecular complexity in a single step.

To explore efficient strategies for synthesizing the C19-diterpene alkaloids, we decided to construct the ACE-ring system $4 \mathbf{a}$ with the C6-8 carbon chain by employing the radical-polar three-component reaction (Scheme 1b). We planned to assemble the structure of 4 a from the azabicyclo[3.3.1]nonane AE-ring 1,5-membered C-ring 2a and the C6-8 carbon chain 3 a . $\mathrm{Et}_{3} \mathrm{~B} / \mathrm{O}_{2}$-promoted C-I bond cleavage of 1 would produce the nucleophilic C11-bridgehead radical A that would add to the electron-deficient double bond of C -ring 2 a , leading to $\mathbf{B a} .{ }^{27,28}$ Then, radical Ba would be captured by $\mathrm{Et}_{3} \mathrm{~B}$ to form boron enolate Ca^{29} that would undergo the aldol reaction with aldehyde 3a. ${ }^{30-32}$ Hence, the one-pot radical and polar additions were expected to afford $\mathbf{4 a}$ possessing the correct C4,11-quaternary and C10-tertiary carbon centers of the C19-diterpene alkaloids, such as talatisamine and puberuline C (highlighted by small circles).

Before investigating the key coupling reactions, we prepared the optically active AE-ring 1 from 2-(methoxycarbonyl)cyclohexanone (7) (Scheme 2). Bromination of 7, followed by exchange of the bromide of 8 with iodide using NaI , led to 9 . The resultant 9 underwent the double Mannich reaction in the presence of formaldehyde and ethyl amine, giving rise to the azabicyclo[3.3.1]nonane structure $(\pm)-10$ as the racemate. ${ }^{33}$ The methyl ester and the ketone groups of $(\pm)-10$ were in turn simultaneously reduced with DIBAL-H (diisobutylaluminium hydride) to the primary and secondary hydroxy groups of $(\pm)-11(\mathrm{dr}$ at $\mathrm{C} 5=1: 1)$. Then, the racemic $(\pm)-11$ was subjected to enzymatic resolution to obtain enantio-enriched (-)-11. Although (\pm)-11 possesses two potentially reactive hydroxy groups for the enzymatic acylation, screening of enzymes and acylating reagents permitted us to realize the chemo- and enantioselective functionalization of the C18-primary hydroxy group. Namely,

[^0]
talatisamine

c

Scheme 1 (a) Structures of the C19-diterpene alkaloids, talatisamine and puberuline C. (b) Plan for assembly of the AE-ring, C-ring and C6-8 carbon chain of the C19-diterpene alkaloids by the three-component coupling reaction. (c) Previously developed radical-polar crossover three-component coupling reaction.
treatment of diol $(\pm)-\mathbf{1 1}(\mathrm{dr}$ at $\mathrm{C} 5=1: 1)$ with Candida rugosa lipase ${ }^{34-36}$ and vinyl butyrate in $i-\mathrm{Pr}_{2} \mathrm{O}$ at $28^{\circ} \mathrm{C}$ provided (-)-11 (39% yield) along with (+)-12 having a C18-butyrate group (39\% yield). The C4,11-absolute configurations of (-)-11 were elucidated by NMR experiments of derivatives of $\mathbf{4 a}$ (Table 1 , see Supplementary Information for details). To determine the enantiomeric ratio of the C5-diastereomeric mixtures (-)-11 and (+)-12, the corresponding C5-ketone $\mathbf{1 3 a} / \mathbf{b}$ was prepared separately from these compounds, and then analyzed with the chiral HPLC. Acetylation of the C18-hydroxy group of (-)-11, and subsequent Dess-Martin oxidation of the C5-hydroxy group provided 13a and 13b in a 9:1 enantiomeric ratio. On the other hand, basic hydrolysis of the butyrate of $(+)-12$ was followed by acetylation and oxidation to afford 13a and 13b in a 1:5.5 ratio. Finally, compound (-)-11 (er $=9: 1$) was converted to the requisite AE-ring fragment $\mathbf{1}$ in two steps; site-selective methyl ether formation by the action of $\mathrm{Me}_{3} \mathrm{O} \cdot \mathrm{BF}_{4}$ and 2,6-di-tert-butylpyridine, and 2 -azaadamantane N-oxyl (AZADO)-catalyzed C5-oxidation in the presence of $\mathrm{CuCl} .^{37}$

To evaluate the reactivity of AE-ring iodide $\mathbf{1}$ as a radical precursor, we first examined the formation of the corresponding radical \mathbf{A} and subsequent addition to the cyclopentenone derivatives ($2 \mathbf{a}-\mathbf{c}$) (Table 1). Upon treatment of $\mathbf{1}$ and cyclopentenone $\mathbf{2 b}$ with $\mathrm{Et}_{3} \mathrm{~B}$ and O_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, the C-I bond at the congested bridgehead position was homolytically cleaved to generate bridgehead radical A that reacted with $\mathbf{2 b}$ to furnish $\mathbf{1 4 b}$ in 65% yield (dr at $\mathrm{C} 10=1: 1$, entry 1). When the enantiopure cyclopentenone derivatives $2 a$ and $2 c^{38}$ were used under the same conditions (entries 2 and 3), the

$1(e r=9: 1)$

13a

Scheme 2 Synthesis of optically active AE-ring fragment 1. Reagents and conditions: (a) $\mathrm{Br}_{2}, \mathrm{Et}_{2} \mathrm{O}$; (b) Nal, acetone; (c) aq HCHO , aq $\mathrm{EtNH}_{2}, \mathrm{MeOH}$, $45^{\circ} \mathrm{C}, 83 \%$ (3 steps); (d) DIBAL-H, THF, 87%, (dr at C5=1:1); (e) lipase from Candida rugosa, vinyl butyrate, $i-\operatorname{Pr}_{2} \mathrm{O}, 28^{\circ} \mathrm{C}, 39 \%$ for (-)-11 (dr at $\mathrm{C} 5=1: 1$), 39% for (+)-12 (dr at $\mathrm{C} 5=1.7: 1$); (f) $\mathrm{Me}_{3} \mathrm{O} \cdot \mathrm{BF}_{4}, 2,6$-di-tertbutylpyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (g) AZADO, DMAP, 2,2'-bipyridine, CuCl , air, $\mathrm{CH}_{3} \mathrm{CN}$, 48% (2 steps); (h) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 100% from (-)-11; (i) Dess-Martin reagent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 80 \%$, 13a: $13 \mathrm{~b}=9$: 1 ; (j) $1 \mathrm{M} \mathrm{KOH}, \mathrm{MeOH}, 73 \%$ from (+)-12; (k) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 100%; (I) Dess-Martin reagent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 84 \%$, $13 \mathrm{a}: 13 \mathrm{~b}=1: 5.5$.
radical reaction of $\mathbf{1}$ occurred from the opposite side of the preexisting tert-butyldimethylsilyl (TBS)-oxy and acetonide groups, providing 14a (51\%) and 14c (52\%), respectively, in a C11-stereospecific and C10-stereoselective manner. Thus, the sterically cumbersome bond between the C11-quaternary and C10-tertiary carbon atoms of $14 \mathrm{a}-\mathrm{c}$ were intermolecularly connected under mild conditions, corroborating the potent reactivity of radical \mathbf{A}.

The bridgehead radical reaction was next extended to the radicalpolar crossover three-component reactions. $\mathrm{Et}_{3} \mathrm{~B} / \mathrm{O}_{2}$ successfully promoted the reaction between iodide $\mathbf{1}$, chiral cyclopentenone 2 a and benzaldehyde ($\mathbf{3 b}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature to afford adduct $\mathbf{4 b}$ in a C8,9,10-stereoselective manner (53%, entry 4). (Trimethylsilyl)propynal (3a) participated in the coupling with 1 and 2 a in the presence of $\mathrm{Et}_{3} \mathrm{~B}$ and O_{2} to selectively yield 4 a (55%, dr at $\mathrm{C} 8=4: 1$, entry 5). No radical reaction to the triple bond of 3a or $4 \mathbf{a}$ was observed, showing the high chemoselectivity of the present method. Moreover, acid/base-sensitive aldehyde 3c with the β-silyloxy group functioned as an effective electrophile to provide $\mathbf{4 c}$ (52%, dr at $\mathrm{C} 8=2.9: 1$, entry 6). The newly generated $\mathrm{C} 8,9,10-$ stereochemistry of coupling products $4 \mathrm{a}-\mathrm{c}$ was consistent, and determined by extensive NMR experiments using their derivatives (see Supplementary Information for details). Significantly, the C9-substituted ACE-ring systems $4 \mathbf{a}-\mathrm{c}$ with the two quaternary carbons $(\mathrm{C} 4,11)$ and one tertiary carbon $(\mathrm{C} 10)$ of the C 19 -diterpene alkaloids were built in a single operation in neutral media at room temperature. In contrast to the successful formation of $4 \mathrm{a}-\mathrm{c}$, the three-

Ca: $Y=O T B S, Z=H^{-}$
14a: $Y=O T B S, Z=H(0 \%)$
14c: $\mathrm{Y}, \mathrm{Z}=\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}(36 \%)$

4b: $Y=O T B S, Z=H(53 \%)$ 4d: $\mathrm{Y}, \mathrm{Z}=\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$ (10\%)

Scheme 3 Rationale of the different reactivity between $\mathbf{2 a}$ and $\mathbf{2 c}$, and the stereoselectivity of the three-component coupling reaction.
component adduct $4 \mathbf{d}$ was obtained from 1, 2c and $\mathbf{3 b}$ in only 10% yield, and the two-component adduct 14 c was mainly generated in 36% yield (entry 7). The distinct behavior of 2 a and 2 c indicated that the C-ring structure influenced the efficiency of the aldol reaction.

The reaction mechanism of the selective generation of $4 b$ and $14 c$ from $2 \mathbf{a}$ and 2c, respectively, is outlined in Scheme 3. Addition of bridgehead radical A to 2a from the opposite side of the TBS-oxy group installs the C10-stereochemistry. After the formation of boron enolate $\mathbf{C a}$, aldehyde $\mathbf{3 b}$ approaches from the less hindered face to avoid the bulky AE-ring, and forms the boron-chelating 6-membered transition state $\mathbf{E a}$, from which the C8,9-stereochemistry of $\mathbf{4 b}$ is established. ${ }^{39,40}$ In the case of $\mathbf{2 c}$, the radical reaction of $2 \mathbf{c}$ and the radical termination of $\mathrm{Et}_{3} \mathrm{~B}$ occurred similarly to 2 a , producing Cc . The approach of $\mathbf{3 b}$ toward one face of the enolate $\mathbf{C c}$, however, is blocked by the AE-ring, and the approach toward the other face is hindered by the acetonide-protected 1,2-diol. Because of the structural differences in the Y,Z-functionalities between $\mathbf{E c}$ and $\mathbf{E a}$, the aldol reaction via Ec becomes less efficient compared with Ea. As a result, the yield of the three-component coupling adduct 4 d is significantly decreased, and hydrolysis of Cc mainly occurs to produce the two-component adduct 14c.

In conclusion, we investigated the two- and three-component reactions of 1 , and realized the expeditious assembly of the functionalized ACE-ring substructure $\mathbf{4 a}$ of the C19-diterpene alkaloids by applying the radical-polar crossover reaction. AE-ring $\mathbf{1}, \mathrm{C}$-ring 2 a and $\mathrm{C} 6-8$ chain 3 a were coupled to generate 4 a using $\mathrm{Et}_{3} \mathrm{~B}$ and O_{2} through formation of the bridgehead radical from iodide $\mathbf{1}$, radical addition to cyclopentenone $\mathbf{2 a}$ and polar addition of the resultant boron enolate to aldehyde 3a. Remarkably, this operationally simple reaction enabled connection of the hindered C10-11 and C8-9 bonds, and installation of the C8,9,10-stereocenters under mild conditions in a single step. As the thus obtained 4 a bears the C4,11-quaternary and C10-tertiary carbon centers, and the C6-8 chain of the C19-diterpene alkaloids, the compound would function as a valuable advanced intermediate for their total syntheses.

Table 1 The two- and three-component radical coupling reactions of $1^{\text {a }}$

${ }^{\text {a }}$ Conditions: 1 (er $=9: 1,1$ equiv), 2a-c (3 equiv), 3a-c (0 or 3 equiv), $\mathrm{Et}{ }_{3} \mathrm{~B}$ (3 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$,
O_{2}, room temperature.
${ }^{\text {b }}$ The product contained a small amount of the diastereomer that would be derived from the minor enantiomer of 1 (14a: its diastereomer $=9.1: 1,14 \mathrm{c}$: its diastereomer $=14: 1$).
${ }^{\text {CThe }}$ product did not contain the diastereomer derived from the minor enantiomer of 1 .
${ }^{\mathrm{d}} \mathbf{1 4}$ c was generated in 36% yield.
${ }^{\text {e }}$ The yield was calculated by ${ }^{1} \mathrm{H}$ NMR analysis, because 4 d and 14 c were inseparable.

EXPERIMENTAL PROCEDURES

General methods

All reactions sensitive to air or moisture were carried out under argon atmosphere in dry solvents under anhydrous conditions, unless otherwise noted. THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ were purified by Glass Contour solvent dispensing system (Nikko Hansen, Osaka, Japan). All other reagents were used as supplied unless otherwise stated. Analytical TLC was performed using E. Merck Silica gel 60 F254 precoated plates (Merck, Darmstadt, Germany). Preparative TLC was performed using E. Merck Silica gel 60 F254 precoated plates with 0.50 mm thickness. Flash chromatography was performed using 40-50 $\mu \mathrm{m}$ Silica Gel 60N (Kanto Chemical, Tokyo, Japan), 40-100 $\mu \mathrm{m}$ Silica Gel 60N (Kanto Chemical), 100-210 $\mu \mathrm{m}$ Silica Gel 60N (Kanto Chemical) and $32-53 \mu \mathrm{~m}$ Silica gel BW-300 (Fuji Silysia Chemical, Aichi, Japan). Optical rotations were measured on a JACSO P-200 Digital Polarimeter at room temperature using the sodium D line (JASCO, Tokyo, Japan). IR spectra were recorded on a JASCO FT/IR-4100 spectrometer. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a JEOL JNM-ECX-500 (500 MHz), a JNM-ECA-500 (500 MHz) or a JNM-ECS-400 (400 MHz) spectrometer (JEOL, Tokyo, Japan). Chemical shifts were reported in ppm on the δ scale relative to $\mathrm{CHCl}_{3}(\delta=7.26$ for ${ }^{1} \mathrm{H}$ NMR), CDCl_{3} ($\delta=77.0$ for ${ }^{13} \mathrm{C}$ NMR), $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\left(\delta=7.16\right.$ for $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ and $\mathrm{C}_{6} \mathrm{D}_{6}\left(\delta=128.0\right.$ for $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ as internal references. Signal patterns are indicated as s, singlet; d, doublet; t , triplet; q , quartet; m , multiplet; br, broad peak. The numbering of compounds corresponds to that of natural product. Electrospray ionization mass spectra were measured on a JEOL JMS-T100LP or a Bruker microTOF II instrument.

Iodide (\pm)-10

$\mathrm{Br}_{2}(200 \mu \mathrm{l}, 7.96 \mathrm{mmol})$ was added to a solution of $7(1.13 \mathrm{~g}, 7.24 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(4.8 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred for 3 h . Then, saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ was added. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml} \times 3)$, and the combined organic layers were washed with brine (10 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude bromide $\mathbf{8}$. The crude $\mathbf{8}$ was divided into three equal parts. One-third of the crude 8 was used in the next iodination.
$\mathrm{NaI}(470 \mathrm{mg}, 3.13 \mathrm{mmol})$ was added to a solution of one-third of the above crude bromide $\mathbf{8}(2.41 \mathrm{mmol})$ in acetone $(4.8 \mathrm{ml})$ at room temperature. The reaction mixture was stirred at room temperature for 1.5 h . Then, the reaction mixture was filtered through a pad of Celite and the filter cake was washed with acetone. The resultant solution was concentrated to afford the crude 9 that was used in the next reaction without further purification.

Aqueous EtNH_{2} (70% in water, $465 \mu \mathrm{l}, 7.23 \mathrm{mmol}$) was added to a solution of the above crude 9 in $\mathrm{MeOH}(8.0 \mathrm{ml})$ and aqueous HCHO (37% in water, $2.3 \mathrm{ml}, 28.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ over 3 h . The reaction mixture was warmed to $45^{\circ} \mathrm{C}$ and stirred for 5 h . After the mixture was cooled to room temperature, $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{ml})$ was added. The resultant mixture was extracted with EtOAc $(8 \mathrm{ml} \times 3)$, and the combined organic layers were washed with brine (5 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (100 g , hexane/EtOAc $50: 1$ to $5: 1$) to afford iodide $(\pm)-10(703 \mathrm{mg}, 2.00 \mathrm{mmol})$. The yield was determined to be 83% yield over 3 steps based on one-third amount of the starting compound 7 : pale yellow oil; IR (film) v 2969, 2949, 2932, 2811, 1739, 1731, 1454, 1435, 1292, 1259, 1224, 1208, 1175, 1131, 1112, 1098, $1090 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.11\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.51(1 \mathrm{H}, \mathrm{m}), 2.30$ $(1 \mathrm{H}$, dddd, $J=14.2,6.4,2.3,2.3 \mathrm{~Hz}), 2.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.57(1 \mathrm{H}, \mathrm{m})$, $2.80(1 \mathrm{H}, \mathrm{m}), 2.99(1 \mathrm{H}$, dddd, $J=13.7,5.9,2.3,2.3 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{dd}, J=11.9$, $\left.2.3 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.18(1 \mathrm{H}, \mathrm{m}), 3.30(1 \mathrm{H}, \mathrm{dd}$, $\left.J=11.9,2.3 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.74(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.8 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.6,24.4,36.6,49.4,50.3,52.5,56.2,59.0$, 61.2, 71.6, 170.5, 203.1; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{INO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 374.0224 , found 374.0225 .

Diol (\pm)-11

DIBAL-H (1.0 m in hexane, $9.2 \mathrm{ml}, 9.2 \mathrm{mmol}$) was added to a solution of $(\pm)-10(536 \mathrm{mg}, 1.53 \mathrm{mmol})$ in THF $(15 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred for 30 min . Then, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$, saturated aqueous potassium sodium tartrate (15 ml)
and EtOAc (15 ml) were successively added. After being stirred at room temperature for 1 h , the resultant mixture was extracted with EtOAc $(10 \mathrm{ml} \times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (40 g , hexane/EtOAc 50:1 to 5:1) to afford a 1:1 C5-diastereomeric mixture of diol (\pm)-11 ($431 \mathrm{mg}, 1.33 \mathrm{mmol}$) in 87% yield: yellow oil; IR (film) $\nu 3403,2970,2925,2809,1471,1452,1394,1327,1291,1227,1146,1076,1025$, $959,943 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03(3 \mathrm{H} \times 1 / 2, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{~N}$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H} \times 1 / 2, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.32-1.50(2 \mathrm{H}\right.$ and $1 \mathrm{H} \times 1 / 2, \mathrm{~m}), 1.44-1.48(1 \mathrm{H} \times 1 / 2, \mathrm{~m}), 2.03-2.10(1 \mathrm{H}, \mathrm{m}), 2.23-2.40(3 \mathrm{H}, \mathrm{m})$, $2.54(1 \mathrm{H} \times 1 / 2, \mathrm{~d}, J=9.2 \mathrm{~Hz}), 2.58-2.93(5 \mathrm{H}$ and $1 \mathrm{H} \times 1 / 2, \mathrm{~m}), 2.97(1 \mathrm{H} \times 1 / 2$, dd, $J=8.71 .9 \mathrm{~Hz}), 3.18(1 \mathrm{H}, \mathrm{m}), 3.34(1 \mathrm{H}, \mathrm{m}), 3.43(1 \mathrm{H} \times 1 / 2, \mathrm{~d}, J=8.7 \mathrm{~Hz})$, $3.48(1 \mathrm{H} \times 1 / 2, \mathrm{~d}, ~ J=9.2 \mathrm{~Hz}), 3.59(1 \mathrm{H} \times 1 / 2, \mathrm{dd}, J=9.2,1.8 \mathrm{~Hz}), 3.88$ $(1 \mathrm{H} \times 1 / 2, \mathrm{~s}), 3.89(1 \mathrm{H} \times 1 / 2, \mathrm{~s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.5(1 \mathrm{C}$ $\times 1 / 2), 12.6(1 \mathrm{C} \times 1 / 2), 24.8(1 \mathrm{C} \times 1 / 2), 25.3(1 \mathrm{C} \times 1 / 2), 25.4(1 \mathrm{C} \times 1 / 2), 33.9$ $(1 \mathrm{C}), 38.9(1 \mathrm{C} \times 1 / 2), 42.3(1 \mathrm{C} \times 1 / 2), 45.9(1 \mathrm{C} \times 1 / 2), 51.2(1 \mathrm{C} \times 1 / 2), 51.7$ $(1 \mathrm{C} \times 1 / 2), 53.0(1 \mathrm{C} \times 1 / 2), 60.4(1 \mathrm{C} \times 1 / 2), 62.5(1 \mathrm{C} \times 1 / 2), 63.4(1 \mathrm{C} \times 1 / 2)$, $69.0(1 \mathrm{C} \times 1 / 2), 70.3(1 \mathrm{C} \times 1 / 2), 70.9(1 \mathrm{C} \times 1 / 2), 80.3(1 \mathrm{C}), 81.1(1 \mathrm{C} \times 1 / 2)$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$326.0611, found 326.0622.

Diol (-)-11 and butyrate (+)-12
Lipase from C. rugosa ($1009 \mathrm{U} \mathrm{mg}^{-1}, 1.27 \mathrm{~g}$) and vinyl butyrate $(1.2 \mathrm{ml}$, 9.7 mmol) were successively added to a solution of diol (\pm)-11 $(1.27 \mathrm{~g}$, $3.91 \mathrm{mmol})$ in $i-\mathrm{Pr}_{2} \mathrm{O}(40 \mathrm{ml})$ at $28^{\circ} \mathrm{C}$. The reaction mixture was stirred at $28^{\circ} \mathrm{C}$ for 1 h . Then, the mixture was filtered through a pad of Celite with $\mathrm{Et}_{2} \mathrm{O}$. After the filtrate was concentrated, brine (15 ml) was added. The resultant solution was extracted with EtOAc $(15 \mathrm{ml} \times 3)$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (30 g , hexane/EtOAc 50:1 to $1: 1$) to afford a 1:1 C5-diastereomeric mixture of diol (-)-11 (491 mg, $1.51 \mathrm{mmol})$ and a 1.7:1 C5-diastereomeric mixture of butyrate (+)-12 (632 mg, 1.54 mmol) in 39% and 39% yields, respectively. The enantiopurity of ($\mathbf{-}$)-11 and (+)-12 was evaluated by the chiral HPLC analysis of compound $\mathbf{1 3}$ derived from (-)-11 and (+)-12, respectively (see Scheme 2). The enantiomeric ratio (er) of $\mathbf{1 3 a} / \mathbf{1 3 b}$ from (-)-11 was $9: 1$ and that from $(+)-12$ was 1:5.5. The analytical detail was described in the Supplementary Information. Diol (-)-11: yellow oil; $[\alpha]_{\mathrm{D}}{ }^{23}-3.5\left(c 1.00, \mathrm{CHCl}_{3}\right)$. Butyrate (+)-12: $[\alpha]_{\mathrm{D}}{ }^{26} 8.0$ (c 1.00, CHCl_{3}); IR (film) ע 3500, 2966, 2931, 2875, 2807, 1739, 1454, 1416, 1384, 1304, 1261, 1181, 1132, 1081, 1048, 1091, $991 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.95\left(3 \mathrm{H} \times 5 / 8, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.03(3 \mathrm{H} \times 3 / 8, \mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.33(1 \mathrm{H} \times 3 / 8, \mathrm{~m}), 1.42-1.46(2 \mathrm{H} \times 5 / 8, \mathrm{~m}), 1.67(2 \mathrm{H}, \mathrm{qt}, J=7.4$, $\left.7.4 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.77(1 \mathrm{H}, \mathrm{m}), 2.19-2.33(5 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H} \times 3 / 8, \mathrm{~d}$, $\left.J=11.0 \mathrm{~Hz}, \mathrm{~N} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.55\left(1 \mathrm{H} \times 5 / 8, \mathrm{~d}, J=11.0 \mathrm{~Hz}, \mathrm{NH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.56-2.70(1 \mathrm{H}$, m), 2.72-2.90 (3H, m), $2.95\left(1 \mathrm{H} \times 5 / 8, \mathrm{~d}, J=11.0 \mathrm{~Hz}, \mathrm{NH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.19(1 \mathrm{H}$ $\times 5 / 8, \mathrm{~s}, \mathrm{H}-5), 3.56\left(1 \mathrm{H} \times 5 / 8, \mathrm{~d}, J=11.0 \mathrm{~Hz}, \mathrm{NH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.74-3.80(1 \mathrm{H}$ and 1 H $\times 3 / 8, \mathrm{~m}), 4.06(1 \mathrm{H} \times 5 / 8, \mathrm{~d}, J=11.0 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{a}), 4.10(1 \mathrm{H} \times 3 / 8, \mathrm{~d}$, $J=11.0 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{a}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 12.5,12.6,13.77,13.79$, $18.7,18.8,25.5,25.7,25.8,33.8,36.1,36.2,39.4,41.9,42.1,46.6,51.4,51.8$, $53.6,60.8,61.8,63.0,63.1,69.36,69.39,69.9,76.9,78.2,173.1,173.2$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{INO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$396.1030, found 396.1017.

Iodide 1

$\mathrm{Me}_{3} \mathrm{O} \cdot \mathrm{BF}_{4}$ ($564 \mathrm{mg}, 3.81 \mathrm{mmol}$) was added to a solution of a $1: 1$ C5-diastereomeric mixture of diol (-)-11 ($620 \mathrm{mg}, 1.91 \mathrm{mmol}$) and 2,6-di-tert-butylpyridine $(1.3 \mathrm{ml}, 5.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred for 2 h . Then, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$ was added. The resultant mixture was extracted with $\mathrm{EtOAc}(15 \mathrm{ml} \times 3)$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (30 g , hexane/EtOAc $50: 1$ to $5: 1$) to afford the crude methyl ether that was used in the next reaction without further purification.
$\mathrm{CuCl}(227 \mathrm{mg}, 2.29 \mathrm{mmol})$ and AZADO ($87.2 \mathrm{mg}, 573 \mu \mathrm{~mol}$) were successively added to a solution of the above crude methyl ether, DMAP (93.3 mg , $764 \mu \mathrm{~mol}$) and 2,2'-bipyridine ($59.7 \mathrm{mg}, 382 \mu \mathrm{~mol}$) in $\mathrm{CH}_{3} \mathrm{CN}(9.6 \mathrm{ml})$ at room temperature. The reaction mixture was stirred at room temperature for 15 min . Then, saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{ml})$ was added. The resultant
mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml} \times 3)$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (20 g , hexane/EtOAc 80:1 to 10:1) to afford iodide $1(309 \mathrm{mg}, 916 \mu \mathrm{~mol})$ in 48% yield over 2 steps: colorless oil; $[\alpha]$ $\mathrm{D}^{22}-0.59\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (film) ע 2973, 2925, 2894, 2807, 1727, 1452, $1385,1348,1318,1289,1235,1202,1164,1112,1020,965,935 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.44(1 \mathrm{H}, \mathrm{m}), 1.75$ $(1 \mathrm{H}$, ddd, $J=13.3,13.3,2.3 \mathrm{~Hz}), 2.34-2.40(4 \mathrm{H}, \mathrm{m}), 2.74(1 \mathrm{H}$, ddd, $J=13.3$, $13.3,2.3 \mathrm{~Hz}), 2.97(1 \mathrm{H}, \mathrm{m}), 3.09(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 3.18(1 \mathrm{H}, \mathrm{m}), 3.31-3.37$ $(2 \mathrm{H}, \mathrm{m}), 3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.44(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=11.0$, $2.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.6,24.6,37.5,49.8,50.3,51.6,59.2$, 59.4, 61.9, 71.7, 76.2, 207.3; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 360.0431 , found 360.0432 .

General procedure A: two-component radical coupling reaction Compound 14b

$\mathrm{Et}_{3} \mathrm{~B}(0.99 \mathrm{M}$ in hexane, $370 \mu \mathrm{l}, 370 \mu \mathrm{~mol})$ was added to a solution of cyclopentenone $\mathbf{2 b}(31 \mu \mathrm{l}, 370 \mu \mathrm{~mol})$ and iodide $\mathbf{1}(41.3 \mathrm{mg}, 123 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mu \mathrm{l})$ at $0{ }^{\circ} \mathrm{C}$ over 30 min . The mixture was warmed to room temperature under air and stirred for 30 min . Then, saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{ml})$ was added. The resultant mixture was extracted with EtOAc ($2 \mathrm{ml} \times 3$), and the combined organic layers were passed through a pad of silica gel with EtOAc. After the filtrate was concentrated, the residue was purified by flash column chromatography on silica gel (4 g , hexane/EtOAc 100:1 to 1:1) to afford a 1:1 C10-diastereomeric mixture of $\mathbf{1 4 b}(23.4 \mathrm{mg}, 79.8 \mu \mathrm{~mol})$ in 65% yield: $[\alpha]_{\mathrm{D}}{ }^{26}-0.43\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (film) v 2957, 2930, 1731, 1710, 1459, $1362,1330,1208,1165,1112,1058 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08$ $\left(3 \mathrm{H} \times 1 / 2, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.09\left(3 \mathrm{H} \times 1 / 2, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$, $1.40-1.50(1 \mathrm{H}, \mathrm{m}), 1.63-1.70(1 \mathrm{H}, \mathrm{m}), 1.73-1.80(2 \mathrm{H}, \mathrm{m}), 1.95-2.07(2 \mathrm{H}, \mathrm{m})$, 2.10-2.19 ($2 \mathrm{H}, \mathrm{m}$), 2.21-2.27 ($1 \mathrm{H}, \mathrm{m}$), 2.29-2.42 ($7 \mathrm{H}, \mathrm{m}$), 2.72-2.90 ($1 \mathrm{H}, \mathrm{m}$), $2.92\left(1 \mathrm{H} \times 1 / 2, \mathrm{dd}, J=11.0,1.8 \mathrm{~Hz}, \mathrm{~N} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.01(1 \mathrm{H} \times 1 / 2, \mathrm{dd}, J=11.0$, $\left.1.8 \mathrm{~Hz}, \mathrm{NH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.14\left(1 \mathrm{H} \times 1 / 2, \mathrm{dd}, J=11.5 \mathrm{~Hz}, \mathrm{NH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.17(1 \mathrm{H} \times 1 / 2, \mathrm{dd}$, $\left.J=11.5 \mathrm{~Hz}, \mathrm{~N} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.29(1 \mathrm{H} \times 1 / 2, \mathrm{~d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{a}), 3.30(1 \mathrm{H} \times 1 / 2, \mathrm{~d}$, $J=9.2 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{a}), 3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.38(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{~b}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.56,12.57,20.36,20.37,20.53,20.54,23.4,23.7$, $35.9,36.3,36.41,36.42,36.52,36.53,38.5,38.7,39.5,39.8,40.9,41.2,50.8$, $50.9,51.1,52.3,59.2,59.3,61.5,61.6,63.2,63.6,212.5,212.6,218.5,218.7$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 316.1883$, found 316.1880.

Compound 14a

According to the general procedure A , a 9.1:1 mixture of 14 a and the diastereomer presumably originated from the minor enantiomer of $\mathbf{1}$ $(25.7 \mathrm{mg}, 60.7 \mu \mathrm{~mol})$ was obtained in 51% yield by using cyclopentenone 2a (enantiopure, $75.8 \mathrm{mg}, 359 \mu \mathrm{~mol}$), iodide $1(\mathrm{er}=9: 1,40.1 \mathrm{mg}, 119 \mu \mathrm{~mol}$) and $\mathrm{Et}_{3} \mathrm{~B}(0.99 \mathrm{~m}$ in hexane, $360 \mu \mathrm{l}, 360 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(240 \mu \mathrm{l})$. The crude was purified by flash column chromatography on silica gel ($4 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ 100:1 to $1: 1$). $[\alpha]_{\mathrm{D}}{ }^{26} 23.0\left(c ~ 1.00, \mathrm{CHCl}_{3}\right)$; IR (film) $\downarrow 2950,2929,2895,2808$, 1747, 1707, 1470, 1389, 1361, 1254, 1204, 1164, 1112, 1007, 979, 940, $908 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) peaks of the major isomer: $\delta 0.03$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS $), 0.86(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), 1.09 $\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.46(1 \mathrm{H}, \mathrm{m}), 1.65-1.82(2 \mathrm{H}, \mathrm{m}), 2.15-2.28$ $(5 \mathrm{H}, \mathrm{m}), 2.33(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 2.36\left(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.58$ $\left(1 \mathrm{H}, \mathrm{d}, J=11 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.70(1 \mathrm{H}, \mathrm{dd}, J=17.8,7.4 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{m})$, $2.95\left(1 \mathrm{H}, \mathrm{dd}, J=11.0,2.3 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.14(1 \mathrm{H}$, ddd, $J=11.4,1.8,1.8 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.32(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{a}), 3.33(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.37(1 \mathrm{H}, \mathrm{d}$, $J=9.6 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{~b}), 4.50(1 \mathrm{H}, \mathrm{dd}, J=6.0,6.0 \mathrm{~Hz}, \mathrm{H}-12) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) peaks of the major isomer: $\delta-4.7,-3.9,12.8,17.7,20.4,25.7,37.9,40.3$, 40.6, 49.3, 50.4, 50.8, 51.4, 52.0, 59.6, 62.3, 62.8, 70.9, 76.0, 216.1, 217.2; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 446.2697$, found 446.2708.

Compound 14c

According to the general procedure A, a $14: 1$ mixture of 14 c and the diastereomer presumably originated from the minor enantiomer of $1(23.4 \mathrm{mg}, 64.0 \mu \mathrm{~mol})$ was obtained in 52% yield by using cyclopentenone 2c (enantiopure, $56.8 \mathrm{mg}, 368 \mu \mathrm{~mol}$), iodide $1(\mathrm{er}=9: 1,41.4 \mathrm{mg}, 123 \mu \mathrm{~mol}$) and $\mathrm{Et}_{3} \mathrm{~B}(0.99 \mathrm{M}$ in hexane, $370 \mu \mathrm{l}, 370 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mu \mathrm{l})$. The crude
was purified by flash column chromatography on silica gel $\left(4 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 10: 1\right) .[\alpha]_{\mathrm{D}}{ }^{22}-65.0\left(c\right.$ 1.00, $\left.\mathrm{CHCl}_{3}\right)$; IR (film) $\nu 2979,2934$, 2810, 1757, 1706, 1453, 1381, 1242, 1210, 1157, 1112, 1041, 1004, $976 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) peaks of the major isomer: $\delta 1.10(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.33(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.43(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.50(1 \mathrm{H}, \mathrm{m}), 1.67$ $(1 \mathrm{H}, \mathrm{ddd}, J=12.6,12.6,6.3 \mathrm{~Hz}), 1.81(1 \mathrm{H}$, ddd, $J=13.2,13.2,6.3 \mathrm{~Hz}), 1.97$ $(1 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{m}), 2.22(1 \mathrm{H}, \mathrm{m}), 2.38-2.45(3 \mathrm{H}, \mathrm{m}), 2.53(1 \mathrm{H}, \mathrm{d}$, $\left.J=11.5 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.63(1 \mathrm{H}, \mathrm{dd}, J=19.5,10.3 \mathrm{~Hz}), 2.67(1 \mathrm{H}, \mathrm{m}), 2.76$ $\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.97\left(1 \mathrm{H}, \mathrm{dd}, J=11.5,1.7 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.09$ $\left(1 \mathrm{H}, \mathrm{dd}, J=11.5,1.2 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.26(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{a}), 3.32$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.36(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{~b}), 4.61(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}-12)$, $4.68(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}-13) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) peaks of the major isomer: $\delta 12.6,19.6,24.7,26.9,37.2,37.8,38.9,45.7,50.2,51.2,51.7,59.6,62.2$, $63.0,75.8,79.65,79.68,111.8,212.8,217.4 ;$ HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$388.2094, found 388.2088.

General procedure B: three-component coupling reaction Compound 4 b

$\mathrm{Et}_{3} \mathrm{~B}(0.99 \mathrm{M}$ in hexane, $350 \mu \mathrm{l}, 350 \mu \mathrm{~mol})$ was added to a solution of cyclopentenone $2 \mathbf{a}$ (enantiopure, $75.4 \mathrm{mg}, 355 \mu \mathrm{~mol}$), aldehyde $\mathbf{3 b}(36 \mu \mathrm{l}$, $350 \mu \mathrm{~mol})$ and iodide $1(\mathrm{er}=9: 1,39.9 \mathrm{mg}, 118 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(240 \mu \mathrm{l})$ at $0^{\circ} \mathrm{C}$ over 30 min . The reaction mixture was warmed to room temperature under air and stirred for 30 min . Then, saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{ml})$ was added. The resultant mixture was extracted with EtOAc $(2 \mathrm{ml} \times 3)$, and the combined organic layers were passed through a pad of silica gel with EtOAc. After the filtrate was concentrated, the residue was purified by flash column chromatography on silica gel $\left(4 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 100: 1\right.$ to $\left.1: 1\right)$ to afford $\mathbf{4 b}$ ($33.2 \mathrm{mg}, 62.7 \mu \mathrm{~mol}$) in 53% yield: colorless oil; $[\alpha]_{\mathrm{D}}{ }^{26} 3.13$ ($c 1.00, \mathrm{CHCl}_{3}$); IR (film) v 3462, 2952, 2928, 2894, 2857, 2807, 1708, 1472, 1456, 1388, 1253, 1172, 1113, $1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.94(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $0.98(3 \mathrm{H}, \mathrm{t}$, $\left.J=6.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.34-1.38(1 \mathrm{H}, \mathrm{m}), 1.44-1.53(2 \mathrm{H}, \mathrm{m}), 1.61(1 \mathrm{H}$, ddd, $J=12.0,12.0,6.3 \mathrm{~Hz}), 1.68(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.9 \mathrm{~Hz}), 2.12-2.19(5 \mathrm{H}, \mathrm{m}), 2.34$ $(1 \mathrm{H}, \mathrm{d}, J=18.9 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{m}), 2.64(1 \mathrm{H}, \mathrm{dd}, J=11.4,1.8 \mathrm{~Hz}), 2.64-2.74$ $(2 \mathrm{H}, \mathrm{m}), 3.02(1 \mathrm{H}, \mathrm{dd}, J=11.4,1.4 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{a}), 3.33$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{~b}), 4.43(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 4.48$ $(1 \mathrm{H}, \mathrm{s}), 4.92(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.29-7.38\left(5 \mathrm{H}, \mathrm{m}\right.$, aromatic); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6,12.5,17.8,20.0,25.7,37.3,37.4,49.6,50.3,51.2$, $52.1,55.3,56.7,59.5,62.1,63.1,71.1,76.0,76.3,127.2,127.8,128.2,141.2$, 216.4, 220.4; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{NO}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 552.3116$, found 552.3117.

Compound 4a

According to the general procedure B, C8(S)-4a ($29.0 \mathrm{mg}, 52.7 \mu \mathrm{~mol}$) and C8 $(R)-4 a(7.4 \mathrm{mg}, 13.5 \mu \mathrm{~mol})$ were obtained in 44% and 11% yields, respectively, by using cyclopentenone 2 a (enantiopure, $76.7 \mathrm{mg}, 361 \mu \mathrm{~mol}$), aldehyde 3a ($53 \mu \mathrm{l}, 361 \mu \mathrm{~mol}$), iodide $1(\mathrm{er}=9: 1,40.6 \mathrm{mg}, 120 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~B}(0.99 \mathrm{M}$ in hexane, $370 \mu \mathrm{l}, 370 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(240 \mu \mathrm{l})$. The crude was purified by flash column chromatography on silica gel ($4 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 100: 1$ to $5: 1$). $\mathrm{C} 8(S)$ 4a: $[\alpha]_{\mathrm{D}}{ }^{26}-0.11\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (film) v 3454, 2955, 2929, 2897, 2857, $2809,2175,1743,1709,1472,1462,1388,1361,1286,1251,1172,1112,1066$, $1006,976 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), 0.13 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.16\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TMS $), 0.86(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), 1.09 $\left(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.49(1 \mathrm{H}, \mathrm{m}), 1.66(1 \mathrm{H}, \mathrm{m}), 1.87(1 \mathrm{H}, \mathrm{m}), 2.02$ $(1 \mathrm{H}, \mathrm{m}), 2.22-2.41(7 \mathrm{H}, \mathrm{m}), 2.54\left(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.81(2 \mathrm{H}, \mathrm{dd}$, $J=18.3,5.5 \mathrm{~Hz}), 3.01\left(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.13(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.26(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{a}), 3.32(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.36(1 \mathrm{H}, \mathrm{d}$, $J=9.2 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{~b}), 3.70(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.43(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}-12), 4.66(1 \mathrm{H}$, d, $J=7.8 \mathrm{~Hz}, \mathrm{H}-8) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.7,-4.5,-0.2,12.7$, 17.7, 20.0, 25.6, 37.4, 38.9, 49.1, 50.4, 51.3, 52.3, 55.3, 55.5, 59.6, 62.2, 63.8, 65.3, 71.0, 75.9, 91.0, 103.6, 216.7, 218.6; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{NO}_{5}{ }^{-}$ $\mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 572.3198$, found 572.3192. C8(R)-4a: $[\alpha]_{\mathrm{D}}{ }^{25} 5.21$ (c 1.00, CHCl_{3}); IR (film) ע 3441, 2955, 2929, 2898, 2857, 2810, 2172, 1743, 1713, 1471, $1459,1389,1250,1173,1113,1065 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS), $0.16\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TMS), 0.87 $\left(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}\right.$ of TBS), $1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.25(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$,
1.45, $(1 \mathrm{H}, \mathrm{m}), 1.71(1 \mathrm{H}, \mathrm{m}), 1.94(1 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{m}), 2.23-2.44(7 \mathrm{H}, \mathrm{m})$, $2.49\left(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.69(1 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{dd}, J=19.2$, $6.4 \mathrm{~Hz}), 2.88\left(1 \mathrm{H}, \mathrm{dd}, J=11.0,1.8 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.12(1 \mathrm{H}, \mathrm{dd}, J=11.0$, $\left.1.4 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.29(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{a}), 3.32(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.34$ $(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{~b}), 4.39(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{H}-12), 4.70(1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}, \mathrm{H}-8) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.8,-4.5,-0.2,12.6,17.7$, $20.4,25.7,37.4,38.5,49.0,50.3,51.3,52.4,55.2,55.3,59.6,62.0,63.6,65.2$, $70.8,75.8,77.3,103.6,217.0,218.4$, one ${ }^{13} \mathrm{C}$ peak was not observed; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{NO}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 572.3198$, found 572.3200.

Compound 4c

According to the general procedure B, a 2.9:1 C8-diastereomeric mixture of $4 \mathrm{c}(39.2 \mathrm{mg}, 64.0 \mu \mathrm{~mol})$ was obtained in 52% yield by using cyclopentenone 2a (enantiopure, $78.4 \mathrm{mg}, 369 \mu \mathrm{~mol}$), aldehyde 3c $(69.5 \mathrm{mg}$, $369 \mu \mathrm{~mol}$), iodide $1(\mathrm{er}=9: 1,41.5 \mathrm{mg}, 123 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~B}(0.99 \mathrm{~m}$ in hexane, $380 \mu \mathrm{l}, 380 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mu \mathrm{l})$. The crude was purified by flash column chromatography on silica gel ($4 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 100: 1$ to $5: 1$). $[\alpha]_{\mathrm{D}}{ }^{26} 2.48$ (c 1.00, CHCl_{3}); IR (film) v 3471, 2953, 2930, 2892, 2857, 2810, 1740, 1470, 1387, 1362, 1295, 1254, 1188, 1171, 1006, 973, $938 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right)$ peaks of the major isomer: $\delta 0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS $\left.\times 2\right), 0.06(3 \mathrm{H}, \mathrm{s}$, CH_{3} of TBS $), 0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of TBS $), 0.87(18 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS $\times 2), 1.06$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.42-1.44(1 \mathrm{H}, \mathrm{m}), 1.60-1.80(3 \mathrm{H}, \mathrm{m}), 1.93$ $(1 \mathrm{H}, \mathrm{m}), 2.02-2.06(1 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{s}), 2.20-2.37(6 \mathrm{H}, \mathrm{m}), 2.47(1 \mathrm{H}, \mathrm{d}$, $\left.J=11.0 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.67-2.73(1 \mathrm{H}, \mathrm{m}), 2.82(1 \mathrm{H}, \mathrm{m}), 2.96(1 \mathrm{H}, \mathrm{d}$, $\left.J=11.0 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.14\left(1 \mathrm{H}, \mathrm{dd}, J=11.4,1.8 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.26(1 \mathrm{H}$, d, $J=10.1 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{a}), 3.31(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.35(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{~b}), 3.80$ $(2 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.02-4.05(1 \mathrm{H}, \mathrm{m}), 4.40(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.5(2 \mathrm{C} \times 3 / 4),-5.4(2 \mathrm{C} \times 1 / 4),-4.8(1 \mathrm{C} \times 1 / 4)$, $-4.7(1 \mathrm{C} \times 3 / 4),-4.4(1 \mathrm{C} \times 1 / 4),-4.3(1 \mathrm{C} \times 3 / 4), 12.61(1 \mathrm{C} \times 3 / 4), 12.64$ $(1 \mathrm{C} \times 1 / 4), 17.7(1 \mathrm{C}), 18.20(1 \mathrm{C} \times 1 / 4), 18.21(1 \mathrm{C} \times 3 / 4), 20.2(1 \mathrm{C} \times 3 / 4), 20.4$ $(1 \mathrm{C} \times 1 / 4), 25.66(3 \mathrm{C} \times 1 / 4), 25.69(3 \mathrm{C} \times 3 / 4), 25.9(3 \mathrm{C} \times 3 / 4), 26.0(3 \mathrm{C} \times 1 / 4)$, $36.5(1 \mathrm{C}), 37.2(1 \mathrm{C} \times 1 / 4), 37.5(1 \mathrm{C} \times 3 / 4), 39.0(1 \mathrm{C} \times 3 / 4), 50.0(1 \mathrm{C} \times 1 / 4)$, $50.1(1 \mathrm{C} \times 3 / 4), 50.2(1 \mathrm{C} \times 1 / 4), 50.3(1 \mathrm{C} \times 3 / 4), 51.2(1 \mathrm{C} \times 1 / 4), 51.3$ $(1 \mathrm{C} \times 3 / 4), 53.1(1 \mathrm{C} \times 1 / 4), 53.2(1 \mathrm{C} \times 3 / 4), 55.9(1 \mathrm{C} \times 3 / 4), 56.5(1 \mathrm{C} \times 1 / 4)$, $56.6(1 \mathrm{C} \times 3 / 4), 59.5(1 \mathrm{C}), 61.3(1 \mathrm{C} \times 1 / 4), 61.5(1 \mathrm{C} \times 3 / 4), 62.1(1 \mathrm{C} \times 3 / 4)$, $62.4(1 \mathrm{C} \times 1 / 4), 63.3(1 \mathrm{C} \times 3 / 4), 63.5(1 \mathrm{C} \times 1 / 4), 70.8(1 \mathrm{C}), 73.0(1 \mathrm{C} \times 1 / 4)$, $73.2(1 \mathrm{C} \times 3 / 4), 75.8(1 \mathrm{C} \times 1 / 4), 75.9(1 \mathrm{C} \times 3 / 4), 216.8(1 \mathrm{C} \times 3 / 4), 217.7$ $(1 \mathrm{C} \times 3 / 4), 218.1(1 \mathrm{C} \times 1 / 4), 221.0(1 \mathrm{C} \times 1 / 4)$, two ${ }^{13} \mathrm{C}$ peaks of the minor diastereomer were not observed; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{61} \mathrm{NO}_{6} \mathrm{Si}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$634.3930, found 634.3943.

Compound 4d

According to the general procedure B, a $3.6: 1$ mixture of $\mathbf{1 4 c}$ and $\mathbf{4 d}(22.3 \mathrm{mg}$, $44.9 \mu \mathrm{~mol}$ for $\mathbf{1 4 c}, 12.5 \mu \mathrm{~mol}$ for $\mathbf{4 d}$) was obtained by using cyclopentenone $\mathbf{2 c}$ (enantiopure, $57.8 \mathrm{mg}, 375 \mu \mathrm{~mol}$), aldehyde $\mathbf{3 b}(38 \mu \mathrm{l}, 370 \mu \mathrm{~mol})$, iodide $\mathbf{1}$ (er $=9: 1,42.1 \mathrm{mg}, 125 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~B}(0.99 \mathrm{~m}$ in hexane, $380 \mu \mathrm{l}, 380 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mu \mathrm{l})$. The crude was purified by flash column chromatography on silica gel ($4 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 100: 1$ to $5: 1$). The yields were calculated to be 36% for $\mathbf{1 4 c}$ and 10% for $\mathbf{4 d}$, respectively. A small amount of the mixture was repurified by flash column chromatography to obtain pure $\mathbf{4 d}$ for characterization. $[\alpha]_{\mathrm{D}}{ }^{25} 9.1\left(c 0.60, \mathrm{CHCl}_{3}\right)$; IR (film) v 3491, 2974, 2934, 2812, 1736, 1705, 1455, 1382, 1243, 1207, 1156, 1114, 1042, $915 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.02\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.20-1.32(3 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.45-1.49(1 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{s}$, acetonide), $1.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 2.04-2.07 ($1 \mathrm{H}, \mathrm{m}$), 2.25-2.30 ($2 \mathrm{H}, \mathrm{m}$), 2.33-2.40 ($1 \mathrm{H}, \mathrm{m}$), $2.49(1 \mathrm{H}, \mathrm{d}$, $J=10.3 \mathrm{~Hz}, \mathrm{H}-9), 2.85-2.87(2 \mathrm{H}, \mathrm{m}), 2.86(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{d}$, $J=9.8 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{a}), 3.29(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.31(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{~b}), 4.00$ $(1 \mathrm{H}, \mathrm{s}), 4.65-4.69(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12$ and $\mathrm{H}-13), 4.75(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}, \mathrm{H}-8)$, $7.26-7.37$ ($5 \mathrm{H}, \mathrm{m}$, aromatic); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.3,14.1,18.4$, $22.3,24.1,26.5,37.2,49.9,51.0,51.7,56.5,59.5,61.7,62.4,76.0,79.4,80.2$, $111.5,127.7,128.2,128.3,140.3,216.1,217.4$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$494.2513, found 494.2497.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This research was financially supported by the Funding Program for a Grant-in-Aid for Scientific Research (A) (JSPS Grant Number 26253003) to MI and a Grant-in-Aid for Young Scientists (A) (JSPS Grant Number 16H06213) to DU.

1 Wang, F. P. \& Chen, Q.-H. in The Alkaloids: Chemistry and Biology, Vol. 69: (ed. Cordell G. A.) 1-577 (Elsevier, New York, 2010).
2 Goodall, K. J., Barker, D. \& Brimble, M. A. A review of advances in the synthesis of analogues of the Delphinium alkaloid methyllycaconitine. Synlett 2005, 1809-1827 (2005).
3 Cherney, E. C. \& Baran, P. S. Terpenoid-alkaloids: their biosynthetic twist of fate and total synthesis. Isr. J. Chem. 51, 391-405 (2011).
4 Hamlin, A. M., Kisunzu, J. K. \& Sarpong, R. Synthetic strategies toward hetidine and hetisine-type diterpenoid alkaloids. Org. Biomol. Chem. 12, 1846-1860 (2014).
5 Liu, X.-Y. \& Qin, Y. Ongoing pursuit of diterpenoid alkaloids: a synthetic view. Asian J. Org. Chem. 4, 1010-1019 (2015).
6 Zhu, G., Liu, R. \& Liu, B. Total synthesis of atisane-type diterpenoids and related diterpenoid alkaloids. Synthesis 47, 2691-2708 (2015).
7 Wiesner, K. The total synthesis of racemic talatisamine. Pure Appl. Chem. 41, 93-112 (1975).
8 Wiesner, K. Total synthesis of delphinine-type alkaloids by simple, fourth generation methods. Pure Appl. Chem. 51, 689-703 (1979).
9 Shi, Y., Wilmot, J. T., Nordstrøm, L. U., Tan, D. S. \& Gin, D. Y. Total synthesis, relay synthesis, and structural confirmation of the C18-norditerpenoid alkaloid neofinaconitine. J. Am. Chem. Soc. 135, 14313-14320 (2013).
10 Marth, C. J. et al. Network-analysis-guided synthesis of weisaconitine D and liljestrandinine. Nature 528, 493-498 (2015).
11 Nishiyama, Y., Yokoshima, S. \& Fukuyama, T. Total synthesis of (-)-cardiopetaline. Org. Lett. 18, 2359-2362 (2016).
12 Tabuchi, T., Urabe, D. \& Inoue, M. Construction of the fused pentacycle of talatisamine via a combination of radical and cationic cyclizations. J. Org. Chem. 81, 10204-10213 (2016).
13 Hagiwara, K., Tabuchi, T., Urabe, D. \& Inoue, M. Expeditious synthesis of the fused hexacycle of puberuline C via a radical-based cyclization/translocation/cyclization process. Chem. Sci. 7, 4372-4378 (2016).
14 Tojino, M. \& Ryu, I. in Multicomponent Reactions (eds Zhu J. \& Bienaymé H.) 169-198 (Wiley-VCH, Weinheim, 2005).
15 Nicolaou, K. C., Edmonds, D. J. \& Bulger, P. G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed. 45, 7134-7186 (2006).
16 Godineau, E. \& Landais, Y. Radical and radical-ionic multicomponent processes. Chem. Eur. J. 15, 3044-3055 (2009).
17 Pellissier, H. Stereocontrolled domino reactions. Chem. Rev. 113, 442-524 (2013).
18 Urabe, D., Asaba, T. \& Inoue, M. Convergent strategies in total synthesis of complex terpenoids. Chem. Rev. 115, 9207-9231 (2015).
19 Inoue, M. Evolution of radical-based convergent strategies for total syntheses of densely oxygenated natural products. Acc. Chem. Res. 50, 460-464 (2017).
20 Kamimura, D., Urabe, D., Nagatomo, M. \& Inoue, M. Et 3 B-mediated radical-polar crossover reaction for single-step coupling of 0, Te-acetal, α, β-unsaturated ketones, and aldehydes/ketones. Org. Lett. 15, 5122-5125 (2013).
21 Kamimura, D., Nagatomo, M., Urabe, D. \& Inoue, M. Expanding the scope of $E t_{3} B / O_{2}$ mediated coupling reactions of 0,Te-acetal. Tetrahedron 72, 7839-7848 (2016).
22 Walton, J. C. Bridgehead radicals. Chem. Soc. Rev. 21, 105-112 (1992).
23 Kraus, G. A., Andersh, B., Su, Q. \& Shi, J. Bridgehead radicals in organic chemistry. An efficient construction of the ABDE ring system of the lycoctonine alkaloids. Tetrahedron Lett. 34, 1741-1744 (1993).
24 Urabe, D., Yamaguchi, H. \& Inoue, M. Application of α-alkoxy bridgehead radical for coupling of oxygenated carbocycles. Org. Lett. 13, 4778-4781 (2011).
25 Schnermann, M. J. \& Overman, L. E. A concise synthesis of (-)-aplyviolene facilitated by a strategic tertiary radical conjugate addition. Angew. Chem. Int. Ed. 51, 9576-9580 (2012).
26 Lackner, G. L., Quasdorf, K. W. \& Overman, L. E. Direct construction of quaternary carbons from tertiary alcohols via photoredox-catalyzed fragmentation of tert-alkyl N-phthalimidoyl oxalates. J. Am. Chem. Soc. 135, 15342-15345 (2013).
27 Rowlands, G. J. Radicals in organic synthesis. Part 1. Tetrahedron 65, 8603-8655 (2009).
28 Rowlands, G. J. Radicals in organic synthesis. Part 2. Tetrahedron 66, 1593-1636 (2010).
29 Beraud, V., Gnanou, Y., Walton, J. C. \& Maillard, B. New insight into the mechanism of the reaction between α, β-unsaturated carbonyl compounds and triethylborane (Brown's reaction). Tetrahedron Lett. 41, 1195-1198 (2000).
30 Nozaki, K., Oshima, K. \& Utimoto, K. Trialkylborane as an initiator and terminator of free radical reactions. Facile routes to boron enolates via α-carbonyl radicals and aldol reaction of boron enolates. Bull. Chem. Soc. Jpn 64, 403-409 (1991).
31 Ollivier, C. \& Renaud, P. Organoboranes as a source of radicals. Chem. Rev. 101, 3415-3434 (2001).
32 Godineau, E. \& Landais, Y. Multicomponent radical processes: synthesis of substituted piperidinones. J. Am. Chem. Soc. 129, 12662-12663 (2007).

33 Kraus, G. A. \& Shi, J. Reactions of bridgehead halides. A synthesis of modhephene, isomodhephene, and epi-modhephene. J. Org. Chem. 56, 4147-4151 (1991).
34 Ihara, M., Suzuki, M., Fukumoto, K. \& Kabuto, C. Asymmetric total synthesis of atisine via intramolecular double Michael reaction. J. Am. Chem. Soc. 112, 1164-1171 (1990).
35 Hudlicky, T. \& Reed, J. W. Applications of biotransformations and biocatalysis to complexity generation in organic syntheses. Chem. Soc. Rev. 38, 3117-3132 (2009).
36 Akita, H. Recent advances in the synthesis of biologically active natural products using biocatalyst. Heterocycles 78, 1667-1713 (2009).

37 Sasano, Y. et al. Highly chemoselective aerobic oxidation of amino alcohols into amino carbonyl compounds. Angew. Chem., Int. Ed. 53, 3236-3240 (2014).

38 Bickley, J. F., Roberts, S. M., Santoro, M. G. \& Snape, T. J. Synthesis and revision of the stereochemistry of a cyclopentenone natural product isolated from ascomycete strain A23-98. Tetrahedron 60, 2569-2576 (2004).
39 Inoue, T. \& Mukaiyama, T. Regio- and stereoselective cross-aldol reactions via dialkylboryl triflates. Bull. Chem. Soc. Jpn 53, 174-178 (1980).
40 Evans, D. A., Nelson, J. V., Vogel, E. \& Taber, T. R. Stereoselective aldol condensations via boron enolates. J. Am. Chem. Soc. 103, 3099-3111 (1981).

Supplementary Information accompanies the paper on The Journal of Antibiotics website (http://www.nature.com/ja)

[^0]: Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
 Correspondence: Professor M Inoue, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hong, Bunkyo-ku, Tokyo 113-0033, Japan.
 E-mail: inoue@mol.f.u-tokyo.ac.jp
 Dedicated with respect and admiration to Professor KC Nicolaou for his many outstanding contributions to natural product synthesis.
 Received 5 April 2017; revised 1 May 2017; accepted 7 May 2017; published online 14 June 2017

