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The microRNA signatures: aberrantly expressed
microRNAs in head and neck squamous cell carcinoma

Keiichi Koshizuka1,2,3, Toyoyuki Hanazawa2,3, Ichiro Fukumoto1,2, Naoko Kikkawa2, Yoshitaka Okamoto2

and Naohiko Seki1

microRNAs (miRNAs) are responsible for fine tuning the normal expression of RNA networks in human cells. Accumulating

studies have demonstrated that abnormally expressed miRNAs have pivotal roles in the development of head and neck squamous

cell carcinoma (HNSCC). Specifically, expression signatures of miRNAs in HNSCC have revealed dysregulated production of

miRNAs and the resultant abnormal production of mRNAs and proteins. In this review, we discuss current findings regarding

aberrantly expressed miRNAs and their contribution to HNSCC molecular pathogenesis.
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HEAD AND NECK SQUAMOUS CELL CARCINOMA

Head and neck squamous cell carcinoma (HNSCC) is the sixth most
common cancer worldwide. It arises in the oral cavity, nasopharynx,
oropharynx, hypopharynx and larynx.1,2 HNSCC is associated with
smoking tobacco, consumption of strong alcoholic beverages and
infection by human papillomavirus.2,3 Even with current advances in
multimodality therapy, the overall survival rate for HNSCC patients
is poor and the mortality rates for this disease have not improved
in the past 40 years.4,5 Local recurrence and distant metastasis after
advanced treatment appear to be major contributing factors in the
poor survival rate of HNSCC patients.6

HNSCC is a heterogeneous disease with accumulated genetic
alterations, such as chromosomal abnormalities, inactivation of tumor
suppressors and activation of oncogenes.7 For example, there is
frequent silencing of tumor suppressor genes (for example, p16ink4a,
p14ARF and TP53) and activation of oncogenic genes (for example,
CCND1, RB1, PI3K and EGFR).8 Dysregulated gene expression
networks might contribute to malignant transformation and the
invasive malignancy of HNSCC.
Recent advances in whole-exome sequencing have provided new

insights into the molecular pathogenesis of HNSCC. These data have
shown that multiple antitumor pathways (TP53, RB1/INK4/ARF
and NOTCH) participate in tumor initiation and aggressiveness.9

The Cancer Genome Atlas (TCGA) study showed the presence of
chromosomal amplifications in 3q26-3q28, a region involving
HNSCC-promoting genes TP53 and SOX2 and the oncogene
PIK3CA.10,11 Moreover, in smoking-related HNSCCs, studies have
demonstrated loss-of-function of both TP53 and CDKN2A as
well as frequent copy-number amplification of 3q26-3q28 and

11q13-11q22.12 Whole-exome sequencing has demonstrated that
mutations in the PI3K pathway were frequently involved in
HNSCC.13

IDENTIFICATION OF ABERRANTLY EXPRESSED MICRORNAS

BASED ON EXPRESSION SIGNATURES OF HNSCC

In normal cells, miRNAs tightly regulate both protein-coding and
protein-non-coding genes.14 A single miRNA can control thousands of
targeted RNAs, and 460% of protein-coding genes may be influenced
by miRNAs.15 Dysregulated miRNA expression disrupts the normal
RNA networks present in healthy cells, leading to oncogenic
development.15,16 Aberrantly expressed miRNAs can be divided into
two classes depending on their expression status.17 Overexpressed
miRNAs can act as oncogenes if they repress tumor suppressor genes.
In contrast, miRNAs with antitumor properties can enhance the
development of cancer cells when they are downregulated (Figure 1).
Strategies to identify abnormal expression of miRNAs and
miRNA-mediated cancer pathways offer new directions in cancer
research.
Cytogenetic alterations constitute early events in the progression of

cancer development. For example, changes in chromosomal structure
can alter the expression of miRNAs. Chromosomal regions that are
subject to amplification or loss may result in miRNAs with oncogenic
behavior or loss of tumor-suppressive properties.18,19 Recent evidence
suggests that epigenetic alterations (heritable changes in gene
expression without DNA sequence alteration) may lead to aberrant
expression of miRNAs in HNSCC cells.20–22 It is well known that
DNA hypermethylation of CpG islands leads to the inactivation of
tumor-suppressive miRNA in cancer cells.19,23 In oral cancer cells,
miR-34b, miR-137, miR-193a and miR-203 function as tumor
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suppressors and these miRNAs are located on CpG islands and
silenced through aberrant DNA methylation.24

Activation of DNA methyltransferases modulates the expression
of both protein-coding and non-coding genes. Three DNA
methyltransferases are particularly important: DNMT3A, DNMT3B
and DNMT1.25 These methyltransferases are regulated by specific
miRNAs, leading to demethylation of specific genomic sequences.26

Thus, downregulation of DNA methyltransferases permits expression
of protein-coding and non-coding genes. Other important epigenetic
gene controls are exerted by histone modification, such as histone
acetylation (associated with active gene transcription) and methylation
of histone H3 lysine 9 (inactivation of gene expression).21,22

Evidence indicates that DNA methylation and histone modification
cooperatively regulate transcription of the human genome21,22,26 and
that epigenetic modifications affect cancer pathogenesis. Thus,
it is important to elucidate the miRNA networks that control the
expression of protein-coding and non-coding genes in cancer cells.
Advanced molecular technologies can identify abnormally expressed

miRNAs in various types of cancer cells. To seek out differentially
expressed miRNAs in HNSCC cells, we used HNSCC clinical
specimens to establish microarray-based, PCR-based and deep
sequencing-based miRNA expression signatures.27–30 Moreover, we
have demonstrated the roles of miRNAs in human SCC
pathogenesis.31,32 In this review, we highlight aberrantly expressed
miRNAs in HNSCC based on 11 miRNA expression signatures from
previously published studies.27–30,33–39 Differentially expressed
miRNAs identified from signatures are summarized in Table 1. The
signatures exhibit considerable variability in the differential expression

of miRNAs. The variety of aberrantly expressed miRNAs may depend
on technical aspects, patient populations and analysis platforms for
miRNA signatures. However, there are certain miRNAs that frequently
observed to be up- or downregulated among the 11 signatures. These
data suggest that these miRNAs may contribute substantially to
HNSCC pathogenesis (Tables 2 and 3).

ABERRANTLY EXPRESSED MIRNAS IN HUMAN

CHROMOSOMES

High-resolution arrays for comparative genomic hybridization have
used to document HNSCC features. Combined genome-wide gene
expression studies have revealed candidate tumor suppressors or
oncogenes that contribute to HNSCC initiation, progression and
metastasis.40 It has hypothesized that novel cancer-related genes or
miRNAs might be present in chromosomal regions that have deleted
or amplified. To investigate the correlation between chromosomal
alterations and miRNA expression in HNSCC cells, we have mapped
dysregulated miRNAs in human chromosomes, merging the data from
current array-based comparative genomic hybridization analysis
(Figure 2).41–45

Six miRNAs (miR-127, miR-411, miR-376c, miR-376a, miR-410 and
miR-487b) are located within chromosomal region 14q32 (Figure 2).
In that region, large miRNA clusters are present and 42 intergenic
miRNAs are located within 10 kb of one another.46 Past studies have
indicated that this chromosomal region has pivotal roles in embryonic
development.46,47 Several reports showed that tumor-suppressive
miRNAs were clustered there in several types of cancers. Among
them, miR-410 inhibited cancer cell proliferation and invasion by

Figure 1 Oncogenic microRNA (miRNA) and tumor-suppressive miRNA in cancer cells. miRNAs can be separated into two main classes: those that are
oncogenic and those that are tumor suppressive. Overexpressed miRNAs can act as oncogenes by repressing tumor suppressor genes, whereas
underexpressed miRNA may normally function as antitumor miRNA by negatively regulating cancer-promoting genes.
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Table 1 microRNA expression profiles in HNSCC

Author Year Journal Location Sample Methods

No. of tissues

(tumor/normal) Downregulated microRNA Upregulated microRNA

Kikkawa 2010 Br. J. Cancer Hypopharyngeal Clinical

tissue

TaqMan Low

Density Array

Human MicroRNA

Panel v1.0 for 365

miRNAs

20 (10/10) miR-1, miR-375, miR-139-5p,
miR-504, miR-125b, miR-199b,
miR-100, miR-497, let-7c,
miR-30a*, miR-218, miR-10b,
miR-126*, miR-378, miR-328,
miR-204, miR-143, miR-126,
miR-99a, miR-195, miR-489,
miR-203, miR-140-5p, miR-29a,
miR-26a, miR-214,miR-30a,
miR-26b, miR-30e*, miR-30b,
let-7b

miR-517c, miR-196a, miR-7,
miR-196b, miR-650, miR-18a,
miR-452, miR-183,miR-432,
miR-301a, miR-21

Hui 2010 Clin. Cancer
Res.

Larynx, oro-

pharynx and

hypopharynx

Clinical

tissue

TaqMan MicroRNA

Assays human

Panel for 322

microRNAs

55 (51/4) let-7f,miR-142-3p, miR-324-5p,
miR-368, miR-370, miR-373*,
miR-422b, miR-424, miR-9,
miR-16–2, miR-140-5p,
miR-miR-1, miR-133a

miR-423, miR-93, miR-106b,
miR-16, miR-20a, miR-155,
miR-193a, miR-25, miR-92,let-7i,
miR-17-5p, miR-19b, miR-223,
miR-27a,miR-142-3p, miR-210,
miR-106a, miR-15a, miR-21,
miR-29b, miR-130b, miR-205,
miR-422b

Liu 2010 Cancer Res. Head and neck Clinical

tissue

TaqMan Low Den-

sity Array Human

MicroRNA Panel

for 154 miRNAs

20 (10/10) miR-100, miR-328, miR-99a,
miR-124, miR-149, miR-139,
miR-124a, miR-204, miR-211

miR-31, miR-34c, miR-187,
miR-135b, miR-372, miR-34b,
miR-21, miR-371, miR-216,
miR-301, miR-10a, miR-155,
miR-130b, miR-223, miR-373,
miR-96, miR-224, miR-147,
miR-128b, miR-104, miR-183,
miR-182

Nohata 2011 Br. J. Cancer Maxillary sinus Clinical

tissue

TaqMan Low Den-

sity Array Human

MicroRNA Panel

v2.0 for 667

miRNAs

10 (5/5) miR-874, miR-133a, miR-375,
miR-204, miR-1, miR-139-5p,
miR-145, miR-143,miR-486-3p,
miR-146a, miR-410, miR-126,
miR-539,miR-134, miR-218,
miR-146b-5p, miR-140-3p,
miR-30a-3p,miR-191, miR-186,
miR-148a, miR-30e-3p, miR-29c

data not shown

Lajer 2011 Br. J. Cancer Oral cavity Clinical

tissue

Affymetrix miRNA

array chips for 847

miRNAs

47 (30/17) miR-375, miR-1224-5p,miR-617,
miR-99a, miR-125b, miR-378,
miR-27b,miR-125b-2*

miR-31, miR-21, miR-223,
miR-503, miR-187, miR-1246,
miR-146b-5p, miR-146a, miR-
-155, miR-424*, miR-181a, miR-
-181b, miR-27a*,miR-132,
miR-106b*, miR-345, miR-21*

Severino 2013 BMC Cancer Oral cavity Clinical

tissue

Illmina miRNA

arrays version 1.0

30 (15/15) miR-1,miR-30a-3p,miR-139,
miR-133a,miR-486,miR-135a,
miR-204,miR-206,miR-411,
miR-499,miR-10b,miR-99a,
miR-299-5p,miR-379,miR-100,
miR-30a-5p,miR-95,miR-378,
miR-218,miR-368,miR-363,
miR-128a,miR-655,miR-376a,
miR-628,miR-487b,miR-410,
miR-140,miR-801,miR-376a*,
miR-154,miR-432

miR-196a,miR-33,miR-19a,
miR-33b,miR-142-5p,miR-503,
miR-31,miR-7,miR-19b,
miR-135b,miR-632,miR-504,
miR-187, miR-339,miR-302d,
miR-34b, miR-34c,miR-455,miR-
-9,miR-296,miR-301,miR-130b,
miR-196b,miR-200a,miR-210,
miR-17-3p,miR-302b*,miR-224,
miR-183,miR-138,miR-188,
miR-92b, miR-182,miR-144,
miR-146b, miR-182*,miR-149,
miR-141,miR-610

Fukumoto 2014 Br. J. Cancer Hypopharyngeal Clinical

tissue

MiRCURY LNA

microRNA Array

22 (11/11) miR-1,miR-133a,miR-133b,
miR-29c-3p,miR-451a,miR-206,
miR-378a-3p,miR-29a-3p,
miR-378d,miR-125b-5p,
miR-101-3p,miR-1184,miR-4328,

miR-21-5p,miR-4732-5p,
miR-4776-3p
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targeting Wnt-7β, an activator of the Wnt-β-catenin
pathway.48

Some miRNAs are grouped closely together within the human
genome, that is, at distances o5 Kb pairs. These so-called ‘clustered
miRNAs’ have studied to determine their functional role in human
cancers.49 Several such clusters are downregulated in several signatures
of HNSCC, including the miR-143/miR-145 cluster (5q32), the miR-
-30*/miR-30c-2 cluster (6q13), the miR-1-2/miR-133a-1 cluster
(18q11.2), the miR-1-1/miR-133a-2 cluster (20q13.3) and the miR-
-99a/let-7c cluster (21q21) (Figure 2). The expression of clustered
miRNAs has regulated by the same transcriptional mechanisms. In
some miRNA clusters, all of the members of the clustered miRNAs
control identical target genes.50

There is a consensus that certain clustered miRNAs (miR-145 and
miR-143) are frequently reduced in a broad range of human cancers,
and that these miRNAs possess tumor-suppressive activities.51–54

Several reports showed that miR-145 and miR-143 targeted the same

genes (GOLM1, HK2 and FSCN1).51–53 Tumor suppressor TP53
transcriptionally regulates the antitumor miR-145 by direct interacting
with the miR-145 promoter region.55–58 Interestingly, the MYC
oncogene is directly repressed by miR-145.55,59,60 Research indicates
that antitumor miR-145 participates in TP53 regulatory pathways, and
contributes to the direct suppressor of MYC oncogenes.

DOWNREGULATED MIRNAS ACT AS TUMOR SUPPRESSORS

IN HNSCC

We and other researchers have used gain-of-function studies
to investigate the functional roles of miRNAs as tumor
suppressors.29–32 Tumor-suppressive miRNAs and their target genes
are summarized in Table 4.
We have identified tumor-suppressive miRNAs in HNSCC based

on expression signatures.27–30 From those data, miR-375 was the most
frequently downregulated miRNA in HNSCC cells. Restoration of
miR-375 markedly suppressed cancer cell aggressiveness, suggesting

Table 1 (Continued )

Author Year Journal Location Sample Methods

No. of tissues

(tumor/normal) Downregulated microRNA Upregulated microRNA

miR-126-3p,miR-145-5p,let-7c,
miR-4324,miR-203a,miR-4462,
miR-29b-3p,miR-659-5p,
miR-5000-3p,miR-4638-5p,

Fukumoto 2014 Br. J. Cancer Oral cavity Clinical

tissue

TaqMan Low Den-

sity Array Human

MicroRNA Panel

v2.0 for 667

miRNAs

10 (5/5) miR-126-5p,miR-145-5p,
miR-145-3p,miR-26b-5p,
miR-26a-5p,miR-204,miR-29c,
miR-195,miR-30c,miR-10b,
miR-656,miR-30e-3p,miR-140-
5p,miR-23b,miR-10b,miR-126-3p,
miR-143,miR-30d,miR-139-5p,
miR-19b-1-5p,miR-598,
miR-885-5p,miR-376c,miR-487b,
miR-101,miR-886-5p,
miR-140-3p,miR-30e,
miR-125b,miR-378a-5p,
miR-320,miR-136-3p,
miR-26a-1-3p,miR-127-3p,
miR-411,miR-30a-3p,miR-29c-5p,
miR-376a,miR-26b-3p,
miR-770-5p,miR-433,miR-375

data not shown

Zhang 2014 Genomics Larynx Clinical

tissue

Illumina platform

for analyzing tran-

scriptomes

employing a 100-

bp paired end

library

12 (10/2) miR-34c miR-1301, miR-15b, miR-182,
miR-183, miR-184, miR-224,
miR-450a-1, miR-450a-2,
miR-9-3, miR-96

Victoria 2015 Oncotarget Head and neck Clinical

tissue

Illumina HiSeq

2000 instrument

to generate 50-

base reads

14 (7/7) miR-191-5p, miR-26a-5p,
miR-181-5p, miR-150-5p,
let-7f-5p, miR-93-5p, let-7a-5p,
miR-30c-5p, miR-28-5p,
miR-26b-5p, miR-30b-5p, miR-
-122-5p, miR-98-5p, miR-183-5p,
miR-224-5p

miR-205-5p, miR-145-5p,
miR-27b-5p, miR-103a-3p,
miR-107, miR-320a, miR-320b,
miR-486-5p, miR-100-5p,
miR-32-5p, miR-215-5p,
miR-148-5p, miR-99a-5p

Wang 2016 J. Exp. Clin.
Cancer Res.

Nasopharyngeal Clinical

tissue

Illumina high-

throughput next-

generation

sequencing

20 (12/8) miR-92b-3p, miR-375, miR-34c-
5p, miR-449c-5p

miR-27a-5p, miR-193b-3p,
miR-92a-3p, miR-205-5p
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Table 2 Downregulated microRNAs in HNSCC

Overlapping transcripts

Number Hsa-mature sequence Stem-loop sequence Locus Sense Antisense Clustered microRNA (within 10Kbp)

6 hsa-miR-375 hsa-miR-375 2q35

5 hsa-miR-99a hsa-miR-99a 21q21.1 MIR99A, LINC00478 hsa-miR-let-7c
5 hsa-miR-125b hsa-miR-125b-1 11q24.1 MIR100HG

hsa-miR-125b-2 24q21.1 LINC00478
5 hsa-miR-139-5p hsa-miR-139 11q13.4 PDE2A
5 hsa-miR-204 hsa-miR-204 9q21.12 TRPM3
4 hsa-miR-1 hsa-miR-1-1 20q13.33 C20orf166

hsa-miR-1-2 18q11.2 MIR133A1HG MIB1 hsa-miR-133a-1
4 hsa-miR-26a-5p hsa-miR-26a-1 3p22.2 CTDSPL
4 hsa-miR-30a-3p hsa-miR-30a 6q13

4 hsa-miR-100 hsa-miR-100 11q24.1 MIR100HG hsa-let-7a-2
4 hsa-miR-126-3p hsa-miR-126 9q34.3 EGFL7
4 hsa-miR-140-3p hsa-miR-140 16q22.1 WWP2
4 hsa-miR-143 hsa-miR-143 5q32 MIR143HG hsa-miR-145
3 hsa-let-7c hsa-let-7c 21q21.1 MIR99A, LINC00478 hsa-miR-99a
3 hsa-miR-10b hsa-miR-10b 2q31.1

3 hsa-miR-26b-5p hsa-miR-26b 2q35 CTDSP1
3 hsa-miR-30c-5p hsa-miR-30c-1 1p34.2 NFYC hsa-miR-30e

hsa-miR-30c-2 6q13

3 hsa-miR-133a hsa-miR-133a-1 18q11.2 MIB1 MIR133A1HG hsa-miR-1-2
hsa-miR-133a-2 20q13.33 C20orf166

3 hsa-miR-145-5p hsa-miR-145 5q32 MIR143HG hsa-miR-143
3 hsa-miR-218 hsa-miR-218-1 4p15.31 SLIT2

hsa-miR-218-2 5q34 SLIT3
hsa-miR-26a-2 12q14.1 CTDSP2

3 hsa-miR-378a-3p hsa-miR-378a 5q32 PPARGC1B
2 hsa-miR-101-3p hsa-miR–101-1 1p31.3 hsa-miR-3671

hsa-miR–101-2 9p24.1 RCL1
2 hsa-miR-124 hsa-miR-124-1 8p23.1

hsa-miR-124-2 8q12.3

hsa-miR-124-3 20q13.33

2 hsa-miR-126-5p hsa-miR-126 9q34.3 EGFL7
2 hsa-miR-127-3p hsa-miR-127 14q32.2 RTL1 hsa-miR-337, hsa-miR-665, hsa-miR-431,

hsa-miR-433,hsa-miR-432, hsa-miR-136
2 hsa-miR-140-5p hsa-miR-140 16q22.1 WWP2
2 hsa-miR-195 hsa-miR-195 17p13.1 MIR497HG hsa-miR-497
2 hsa-miR-199b hsa-miR-199b 9q34.11 DNM1 hsa-miR-3154
2 hsa-miR-206 hsa-miR-206 6p12.2 hsa-miR-133b
2 hsa-miR-29a-3p hsa-miR-29a 7q32.3 LOC646329 hsa-miR-29b-1
2 hsa-miR-29c-3p hsa-miR-29c 1q32.2 hsa-miR-29b-2
2 hsa-miR-30a-5p hsa-miR-30a 6q13

2 hsa-miR-30e-3p hsa-miR-30e 1p34.2 NFYC hsa-miR-30c-1
2 hsa-miR-328 hsa-miR-328 16q22.1 ELMO3
2 hsa-miR-376a hsa-miR-376a-1 14q32.31 hsa-miR-543, hsa-miR-495, hsa-miR-376c,

hsa-miR-376a-2, hsa-miR-654,
hsa-miR-376b,

hsa-miR-300, hsa-miR-1185-1,
hsa-miR-1185-2.

hsa-miR-381, hsa-miR-487b, hsa-miR-539,
hsa-miR-889, hsa-miR-544a, hsa-miR-655

hsa-miR-376a-2 14q32.31 hsa-miR-543, hsa-miR-495, hsa-miR-376c,
hsa-miR-376a-1, hsa-miR-654,

hsa-miR-376b,
hsa-miR-300, hsa-miR-1185-1,

hsa-miR-1185-2.
hsa-miR-381, hsa-miR-487b, hsa-miR-539,
hsa-miR-889, hsa-miR-544a, hsa-miR-655

2 hsa-miR-410 hsa-miR-410 14q32.31
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this miRNA acts as a tumor suppressor.61–63 Our study showed that
the metadherin (MTDH) and lactate dehydrogenase B genes were
directly regulated by miR-375 in HNSCC cells.61 Similarly,
another study showed the regulation of MTDH by miR-375.
Moreover, silencing of MTDH in HNSCC cell lines resulted in
significantly reduced tumor formation.64 Hypermethylation of the
promoter regions of miR-375 silenced miR-375 expression in cancer
cells.65,66

The miR-99 family (miR-99a, miR-99b and miR-100) is evolutio-
narily ancient. The origin of the family precedes bilaterian ancestors.67

miRNAs in the same family have nearly identical sequences and target
the same sets of genes.67 Among miR-99 family members, miR-99a
and miR-100 are frequently downregulated in several HNSCC
signatures (Table 2). The deregulation of miR-99 family members
has been reported frequently in several types of cancers, and they have

an important role in regulating cancer cell development and
progression.68,69 In a recent study, miR-99 family members were
identified using a mouse dermal wound healing model. These miRNAs
regulate cell proliferation and migration of skin and oral mucosa
epithelial cells by regulating AKT/mTOR signaling.70 The same group
showed that a miR-99 family member directly controlled HOXA1 in
embryonic development.67

The miR-100 gene is mapped on human chromosome 11q24.1,
which is frequently deleted in several types of cancer.71 Several reports
showed that downregulation of miR-100 was involved in human
cancers.72 miR-100 regulates the PI3K/AKT pathway, which is a key
signaling system that promotes cancer cell proliferation and suppresses
apoptosis in bladder cancer.73 On the other hand, miR-100 inhibits
invasion through regulating HOXA1 in breast cancer.74 Because of the
remarkable stability of miR-100 in blood, several reports revealed that

Table 2 (Continued )

Overlapping transcripts

Number Hsa-mature sequence Stem-loop sequence Locus Sense Antisense Clustered microRNA (within 10Kbp)

hsa-miR-323b, hsa-miR-154, hsa-miR-496,
hsa-miR-377, hsa-miR-541, hsa-miR-409,
hsa-miR-412, hsa-miR-369, hsa-miR-656

2 hsa-miR-411 hsa-miR-411 14q32.31 hsa-miR-379, hsa-miR-299, hsa-miR-380,
hsa-miR-1197, hsa-miR-323a, hsa-miR-758,
hsa-miR-329-1, hsa-miR-329-2, hsa-miR-494,

hsa-miR-1193, hsa-miR-543
2 hsa-miR-487b hsa-miR-487b 14q32.31 MIR381HG hsa-miR-543, hsa-miR-495, hsa-miR-376c,

hsa-miR-376a-1, hsa-miR-376a-2, hsa-miR-654,
hsa-miR-376b, hsa-miR-300, hsa-miR-1185-1,
hsa-miR-1185-2. hsa-miR-381, hsa-miR-539,
hsa-miR-889, hsa-miR-544a, hsa-miR-655

2 hsa-miR-30b-5p hsa-miR-30b 8q24.22 hsa-miR-30d
2 hsa-miR-34c-5p hsa-miR-34c 11q.23.1 hsa-miR-34b
2 hsa-miR-191-5p hsa-miR-191 3p21.31 NDUFAF3 DALRD3 hsa-miR-425

Table 3 Upregulated microRNAs in HNSCC

Overlapping transcripts

Number Hsa-mature sequence Stem-loop sequence Locus Sense Antisense Clustered microRNA (within 10Kbp)

4 hsa-miR-21 hsa-miR-21 17q23.1

4 hsa-miR-183 hsa-miR-183 7q32.2 hsa-miR-96, hsa-miR-182
3 hsa-miR-31 hsa-miR-31 9p21.3 MIR31HG
3 hsa-miR-182 hsa-miR-182 7q32.2 hsa-miR-96, hsa-miR-183
3 hsa-miR-223 hsa-miR-223 Xq12

2 hsa-miR-27a-5p hsa-miR-27a 19p13.12 hsa-miR-23a, hsa-miR-24-2
2 hsa-miR-96 hsa-miR-96 7q32.2 hsa-miR-182, hsa-miR-183
2 hsa-miR-130b hsa-miR-130b 22q11.21 hsa-miR-301b
2 hsa-miR-135b hsa-miR-135b 1q32.1 BLACAT1
2 hsa-miR-155 hsa-miR-155 21q21.3 MIR155HG
2 hsa-miR-187 hsa-miR-187 18q12.2

2 hsa-miR-196b hsa-miR-196b 7p15.2 HOXA10-AS, HOXA-AS4 HOX10-HOXA9
2 hsa-miR-301 hsa-miR-301a 17q22 SKA2

hsa-miR-301b 22q11.21 hsa-miR-130b
2 hsa-miR-503 hsa-miR-503 Xq26.3 MIR503HG hsa-miR-424, hsa-miR-542,

hsa-miR-450a-1, hsa-miR-450a-2,
hsa-miR-450b
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the expression levels can be used as a biomarker for diagnosis and
prognosis.72

The miR-125 family consists of several members, miR-125a
(chromosome 11q24) and miR-125b (chromosome 24q21.1), with
distinct seed sequences.75 A large number of studies have found
that miR-125b is dysregulated in multiple types of cancers and
has pivotal roles in cancer pathogenesis.76–79 Overexpression of
miR-125b-1 inhibited HNSCC cell aggressiveness via targeting
of tumor-associated calcium signal transducer 2 (TACSTD2) as a
glycoprotein.80

miR-125b regulates the ErbB genes, which are tyrosine kinase
receptors.81 Surprisingly, miR-125b can also promote cell proliferation
through its targeting of p53 expression.82 In fact, upregulated
miR-125b promotes cancer cell aggressiveness in many
cancers.75,83–86

miR-139 is located on chromosome 11q13.4. It acts as a tumor
suppressor in colorectal cancer, hepatocellular cancer, breast cancer
and non-small cell lung cancer,87–90 and it may be a promising
biomarker.91 Moreover, one report showed that miR-139 inhibited
proliferation and metastasis via targeting of CXCR4 in laryngeal
squamous cell carcinoma.92

The miR-204 gene is located in the cancer-associated genomic
region (CAGR) 9q21.12. It exhibits a high frequency of loss of
heterozygosity in various cancers including HNSCC.93 Furthermore,

the expression levels of miR-204 in HNSCC were downregulated and
it suppressed HNSCC cell migration, adhesion and invasion in
HNSCC.93

We recently showed that six miRNAs (miR-26a, miR-26b, miR-29a,
miR-29b, miR-29c and miR-218) markedly inhibited metastasis-related
genes or pathways in HNSCC.30–32 For example, miR-26a/b,
miR-29a/b/c and miR-218 commonly targeted lysyl oxidase-like 2
(LOXL2), which promotes metastasis in several types of cancers.94

Furthermore, the 11 signatures revealed that miR-26a-5p/miR-26b-5p,
miR-29a-3p/miR-29c-3p and miR-218 were downregulated in HNSCC.
Therefore, we will focus on these families below.
The three members of the miR-26-family are distributed as follows:

miR-26a-1 (chromosome 3p22.2), miR-26a-2 (chromosome 12q14.1)
and miR-26b (chromosome 2q35). The seed sequences of these
miRNAs are identical, suggesting that all miR-26 family members
regulate the same human genes. Interestingly, MYC protein directly
binds to promoter regions of these miRNAs and MYC negatively
suppresses the expression of these miRNAs.95 Expression of miR-26a
and miR-26b was significantly downregulated in oral cancer tissues
and restoration of both miR-26a and miR-26b significantly inhibited
cancer cell migration and invasion.30,87 miR-26a and miR-26b were
reported to possess antitumor functions in several types of
cancers.96–100

Figure 2 Chromosome mapping of aberrantly expressed microRNA (miRNA) in head and neck squamous cell carcinoma. Downregulated and upregulated
miRNAs in chromosomes, merging the data from array for comparative genomic hybridization analysis (green bars are amplified regions whereas red bars
show regions of loss). The blue arrows indicate downregulated miRNAs found in multiple profiling studies, and the brown arrows indicate upregulated
miRNAs found in multiple signatures.
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The four members of the miR-29 family consist of two miRNA
clusters, one located at 7q32 (miR-29b-1 and miR-29a) and the other
at 1q32 (miR-29b-2 and miR-29c).101 Downregulation of miR-29s was
reported in esophageal cancer, hepatocellular cancer, gastric cancer
and colon cancer.101 Furthermore, our past report revealed that
expression of miR-29s significantly downregulated and inhibited
cancer cell migration and invasion in HNSCC, prostate cancer, renal
cell carcinoma and lung cancer.32,102–104 On the other hand, miR-29
was upregulated in diffuse large B lymphoma.105

The miR-218 family is divided between two chromosomal regions:
miR-218-1 at 4p15.31 and miR-218-2 at 5q34.106 Considerable
evidence suggests that downregulation of miR-218 occurs in various
cancers and that it normally acts as an antitumor miRNA, such as in
colorectal cancer.107 Ectopic expression of miR-218 significantly
suppressed HNSCC cell aggressiveness through targeting of genes
involved in focal adhesion pathways, such as laminins and integrins.31

UPREGULATED MIRNAS ACT AS ONCOGENIC GENES IN

HNSCC

Upregulated microRNAs may possess oncogenic activities if they target
tumor-suppressive genes. In the 11 microRNA profiles, miR-21 and
miR-183 were the most frequently upregulated in HNSCC clinical
specimens.
The miR-21 gene is located at 17q23.1. Several reports revealed that

miR-21 was upregulated in various cancers including HNSCC, and this
miRNA acts as a key promoter of oncogenic processes.108 Moreover,
miR-21 was a prognostic marker and was associated with clinico-
pathological characteristics in HNSCC.109

miR-183, miR-96 and miR-182 are clustered microRNAs at 7q32.
2.110 Although past reports showed that miR-183 acted as an oncogene

in gastric cancer and colon cancer,111,112 no report has shown that
miR-183 is an oncogene in HNSCC.
The miR-223 gene is generated from a site located at Xq12. In the

profiles, miR-223 was one of the most highly upregulated in HNSCC.
Upregulated expression levels of miR-223 are reported in various types
of cancer.113,114 However, miR-223 suppresses proliferation and
migration through targeting MAFB in nasopharyngeal carcinoma
cells.115 Moreover, our past study revealed that miR-223 inhibited
migration and invasion via its targeting of ITGB4 in prostate cancer.116

miR-31 is located at 9p21.3, and its expression status varies
according to the cancer type. Upregulation of miR-31 was reported
in EBV-associated nasopharyngeal carcinoma, lung cancer and ovarian
cancer.117 Furthermore, expression of miR-31 was significantly upre-
gulated in patients with early stage OSCC, suggesting that salivary
miR-31 was a biomarker for this disease.118 On the other hand, our
past report revealed that miR-31 was downregulated in prostate cancer
tissues.119

miR-182 is transcribed from a locus at 7q32.2, and it is clustered
with miR-183 and miR-96.110 miR-182 was overexpressed in papillary
thyroid cancer, prostate cancer, breast cancer and lung cancer.110

Furthermore, the serum expression level of miR-182 is diagnostic
with prognostic potential in ovarian cancer patients.120 In HNSCC,
the expression level of miR-182 was upregulated in human
papillomavirus-associated oropharyngeal carcinoma and related to
cancer invasion and drug resistance.121

CONCLUSIONS

The discovery of miRNAs has opened new approaches in cancer
research, providing insights into novel pathological processes
underlying oncogenic transformation. Aberrantly expressed miRNAs

Table 4 Validated target genes of tumor-suppressive microRNA in HNSCC

MicroRNA Author Year Journal Location Target genes Method

miR-375 Luo 2014 Biomed. Res. Int. Laryngeal IGF1R PCR, western blot, luciferase assay

miR-375 Kinoshita 2012 Int. J. Oncol. Maxillary sinus LDHB PCR, western blot, luciferase assay

miR-375 Nohata 2011 J. Hum. Genet. Head and neck AEG-1, MTDH PCR, western blot, luciferase assay

miR-375 Hui 2011 Clin. Cancer Res. Head and neck MTDH PCR, western blot

miR-99a Kuo, Y 2014 Oral Dis. Oral cancer MTMR3 qRT-PCR, western blot

miR-99a Chen, Z 2012 Oral Oncol. Head and neck IGF1R, mTOR qRT-PCR, western blot

miR-99a Yan, B 2012 Mol. Med. Rep. Oral cancer mTOR Western blot, Luciferase assay

miR-125b Nakanishi 2014 Oncogene Head and neck TACSTD2 Western blot, Luciferase assay

miR-125b Shiiba 2013 Br. J. Cancer Oral cancer ICAM2 qRT-PCR, Luciferase assay

miR-139 Luo 2014 Med. Oncol. Laryngeal CXCR4 qRT-PCR, western blot, Luciferase assay

miR-204 Lee, Y PloS Comput. Biol. Head and neck SPARC qRT-PCR

miR-204 Ma, L 2014 FEBS Lett. Nasopharyngeal CDC42 Western blot, Luciferase assay

miR-26a/b, miR-29a/b/c, miR-218 Fukumoto 2015 J. Hum. Genet. Head and Neck LOXL2 PCR, western blot, luciferase assay

miR-26a Yu 2013 Oncol. Lett. Nasopharyngeal EZH2 PCR, western blot, IHC

miR-26a Jia 2014 Int. J. Cancer Tongue DNMT3B PCR, western blot, luciferase assay

miR-26a/b Fukumoto 2014 Br. J. Cancer Oral cavity TMEM184B PCR, western blot, luciferase assay

miR-29b Yang 2014 Oral Oncol. Oral cavity CX3CL1 PCR, western blot, luciferase assay

miR-29b Jia 2014 Oral Oncol. Oral cavity Sp1 PCR, western blot, luciferase assay

miR-29c Liu 2013 Cancer Lett. Nasopharyngeal TIAM1 PCR, western blot, luciferase assay

miR-29a LU 2013 Biomed. Pharmacother. Oral cavity MMP2 PCR, western blot, luciferase assay

miR-29a/b/c Kinoshita 2013 Br. J. Cancer Head and Neck LAMC2, ITGA6 PCR, western blot, luciferase assay

miR-218 Kinoshita 2012 Oncotarget Head and Neck LAMA3, LAMB3, LAMC2 PCR, western blot, luciferase assay

miR-218 Uesugi 2011 Cancer Res. Oral cavity RICTOR PCR, western blot, luciferase assay

miR-218 Wu 2014 Carcinogenesis Oral cavity PXN PCR, western blot

miR-218 Alajez 2011 Cancer Res. Nasopharyngeal ROBO1, BIRC5 PCR, western blot, luciferase assay

Abbreviations: LDHB, lactate dehydrogenase B; MTDH, metadherin.
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disrupt tightly controlled RNA networks in normal cells and thereby
promote pathologic events. The present review highlighted recent
findings in HNSCC miRNA expression signatures. The identification
of aberrant miRNA-regulated cancer networks is an exciting new
development in cancer research and suggests new therapeutic
approaches.
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