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Onco-GPCR signaling and dysregulated expression
of microRNAs in human cancer

Nijiro Nohata1, Yusuke Goto2 and J Silvio Gutkind1,3

The G-protein-coupled receptor (GPCR) family is the largest family of cell-surface receptors involved in signal transduction.

Aberrant expression of GPCRs and G proteins are frequently associated with prevalent human diseases, including cancer. In fact,

GPCRs represent the therapeutic targets of more than a quarter of the clinical drugs currently on the market. MiRNAs (miRNAs)

are also aberrantly expressed in many human cancers, and they have significant roles in the initiation, development and

metastasis of human malignancies. Recent studies have revealed that dysregulation of miRNAs and their target genes expression

are associated with cancer progression. The emerging information suggests that miRNAs play an important role in the fine tuning

of many signaling pathways, including GPCR signaling. We summarize our current knowledge of the individual functions of

miRNAs regulated by GPCRs and GPCR signaling-associated molecules, and miRNAs that regulate the expression and activity of

GPCRs, their endogenous ligands and their coupled heterotrimeric G proteins in human cancer.
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INTRODUCTION

More than 20 years ago, the first microRNA (miRNA), lin-4, was
discovered in Caenorhabditis elegans (C. elegans) in 1993 by two
research groups,1,2 the second C. elegans miRNA, let-7, was identified
in 2000.3 This 7-year time gap could be considered to be related to the
immaturity of the genetics and molecular biology methods used to
discover miRNAs at that time. However, this delay in advancing the
field could be also due to the lack of appreciation of the significant
roles of miRNAs in biology among most scientists, who previously
regarded miRNA as a worm-specific curiosity. However, the field of
miRNA research has remarkably expanded to date with over 28 000
miRNAs discovered in 223 species, including more than 2500 in
humans.4 The key word of 'microRNA' currently pulls more than
47 000 publications from PubMed. MiRNAs have been the most
characterized of the non-coding RNAs. MiRNAs are a class of small
non-coding RNA molecules 19–25 nucleotides in length, which play
pivotal roles in normal biological processes, such as development,
differentiation, apoptosis, senescence and cell proliferation through
gene expression regulation at post-transcriptional levels.5 MiRNA
genes are transcribed by RNA polymerase II (Pol II). The transcribed
long RNA is capped with a specially modified nucleotide at the 5′ end,
poly-adenylated with multiple adenosines (Poly-A) and then spliced.
This product is called primary miRNA. Drosha ribonuclease type III
processes primary miRNA into precursor-miRNA. Exportin 5 exports
Hairpin-shaped precursor-miRNAs from the nucleus to the cyto-
plasm. In the cytoplasm, the precursor-miRNA hairpin is cleaved by
the RNase III enzyme Dicer, and one strand is taken into the RNA-
induced silencing complex (RISC), where the miRNA and its target

mRNA interact. MiRNAs that bind to the 3′ untranslated region
(UTR) of targets with perfect match induce mRNA cleavage, whereas
translational repression, and hence reduced protein expression, is
induced when matching is imperfect.6 Aberrant miRNA alterations
have been identified in a number of human diseases, such as cardiac
disorders, immune-related and neurodegenerative diseases, and
cancers, to name but a few.7,8 The direct link between miRNAs
and human cancer was first recognized with the observation that
tumor-suppressive miR-15 and miR-16 genes were frequently deleted
or downregulated in B-cell chronic lymphocytic leukemia samples in
2002.9 A recent explosion of studies have revealed that miRNAs are
aberrantly expressed in many cancers.10,11

The G-protein-coupled receptor (GPCR) family is the largest family
of cell-surface receptors involved in signal transduction. The GPCR
family of proteins comprises approximately 4% of the protein-coding
human genes with over 800 members.12 GPCRs are characterized by a
seven-transmembrane domain structure with an extracellular amino
terminus and an intracellular carboxyl terminus. Some important
functions of GPCRs include regulation of cellular motility, growth,
differentiation and gene expression.12 At the physiological level,
GPCRs are involved in many processes, such as cardiac function,
hormone regulation, immune responses, neurotransmission and
sensory functions. Thus, their aberrant activity or expression is deeply
associated with some of the most prevalent human diseases.13 Many
independent studies have revealed that GPCRs play crucial roles in the
malignant transformation of human cancers.13 In 1986, the first direct
connection between tumorigenesis and GPCRs was demonstrated by
the discovery of the MAS1 proto-oncogene, which encodes a typical
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GPCR, inducing foci of transformation in NIH3T3 cells.14 Initially
considered to represent a cloning anomaly, subsequent studies
established that GPCRs are overexpressed in multiple types of cancer,
and contribute to cell growth when they are activated by their
respective circulating or locally available ligands.13,15

GPCRs are key transducers of cell signaling from the extracellular
environment to the inside of the cell. Many ligands, such as sensory
signal mediators (e.g., light and olfactory stimulatory molecules),
chemokines, Wnts, hormones, and many others, are capable of
inducing conformational changes that promote receptor activation,
by altering the position of its transmembrane helices and intracellular
loops.16 Members of the large family of GPCRs transduce signaling by
activating one or more members of the family of heterotrimeric
G proteins, namely α-, β- and γ-subunit of G proteins. The β- and
γ-subunits are able to form a stable dimer which is called the βγ
complex. Many GPCRs mutually couple to more than one G-protein.
For example, rhodopsin preferentially couples to transducing, while β2
adrenergic receptor preferentially couples to Gαs. In addition, both are
also capable of coupling with Gαi (GNAI).17 Typically, Gαs (GNAS)
stimulates adenylyl cyclase (AC) and increases levels of cyclic AMP
(cAMP), whereas Gαi (GNAI) inhibits AC and decreases cAMP levels.
The Gαq (GNAQ) members bind to and activate phospholipase
C (PLC), which degrades phosphatidylinositol bisphosphate (PIP2)
into diacylglycerol and inositol triphosphate. Gα12 (GNA12) and Gαq
(GNAQ) members can regulate the activity of key intracellular
signaling molecules, such as small GTPases of the Ras and Rho
families and members of the mitogen-activated protein kinase family.
These effectors in turn activate each cascade of downstream signaling
events that eventually results in an alteration of cell function.18

MICRORNAS TARGETING CHEMOKINE RECEPTORS

In this article, we focus on regulatory mechanisms resulting from the
interaction between miRNAs and their mRNA targets, involving the
inhibition of mRNA expression by promoting its degradation or
translational repression of the encoded protein by sequence-specific
binding at 3′ UTR of the mRNA, unless otherwise noted. Chemokine
receptors are seven-transmembrane cytokine receptors, which interact
with extracellular chemokines. There have been 20 distinct chemokine
receptors expressed in mammals. Chemokine receptors are divided
into four distinct families, CXC chemokine receptors, CC chemokine
receptors, CX3C chemokine receptors and XC chemokine receptors.
They correspond to the respective subfamilies of chemokines which
they can bind to. Among them, CXCR4, a C-X-C motif chemokine
receptor, has received considerable attention, as it is overexpressed in a
number of cancer types and involved in cell migration towards distant
organs during cancer metastasis.19 miR-146 is a direct regulator
of CXCR4 expression in several cancers, such as breast cancer,20

Kaposi’s sarcoma (KS)21 and acute myeloid leukemia.22 Wang
et al.20 reported that TRAIL-induced miR-146a expression suppresses
CXCR4-mediated breast cancer cell migration. Punj et al.21

demonstrated that KS-associated herpesvirus (KSHV)-encoded viral
FLICE inhibitory protein (vFLIP) K13 upmodulates miR-146a
expression via NF-kappaB activation, which leads to suppression of
CXCR4 expression. In gastric cancer, miR-139 is suppressed by CD44
bound to HER2 directly,14 which promotes CXCR4 overexpression.23

miR-139 is also downregulated in laryngeal squamous cell carcinoma
(SCC), and Luo et al.24 showed the direct regulation of CXCR4 by
miR-139 in laryngeal SCC cells. Multiple additional miRNAs have
been reported as direct CXCR4 suppressors, including miR-9 which
regulates CXCR4 as a potential tumor suppressor in nasopharyngeal
carcinoma25 and oral SCC.26 In addition, in colon cancer miR-12627

and miR-133b28 regulate CXCR4; miR-494-3p in prostate29 and breast
cancer;30 miR-302a in breast cancer;31 the miR-302-367 cluster in
glioblastoma multiforme;32 and miR-150 in pancreatic cancer,33

together supporting that CXCR4 represent a frequent target for
miRNAs in human malignancies.
Recently, the involvement of CXCR6 and its ligand CXCL16

(C-X-C motif chemokine 16) in tumor progression is becoming more
evident.34 The CXCR6/CXCCL16 axis act as a positive promoter of
cell growth and metastasis in some types of cancer.35 miR-361-5p
suppressed CXCR6 expression in hepatocellular carcinoma (HCC).36

CXCR7 is also highly expressed in many malignancies, suggesting
CXCR7 is a potential therapeutic target for cancers.37 CXCR7 was
firstly thought to be an orphan receptor. However, it is now classified
as a member of chemokine receptors which is able to bind CXCL1238

and CXCL11.39 Tumor-suppressive miR-101, which is epigenetically
repressed by polycomb repressive complex 2 (PRC2), regulates
CXCR7 in HCC.40 In bladder cancer, decreased miR-430 functions
as a tumor suppressor by suppressing CXCR7 expression, which leads
to downregulation of oncogenic ERK, metalloproteinase-2 (MMP-2)
and MMP-9 activity.41

CC chemokine receptor 6 (CCR6) is a C-C motif chemokine
receptor protein that is preferentially expressed in dendritic cells, NK
cells, B-cells and T-cells.42 CCR6 is a specific receptor for the ligand
CCL20,42 and has been reported as a specific marker of Th17 cells and
regulatory T-cells segregating from other helper T-cells.43,44 In cancer
cells, CCR6 is regulated by miR-150 in cutaneous T-cell lymphoma,45

and is regulated by miR-518a-5p in colorectal cancer.46

CCR7 is another C-C motif chemokine receptor protein that was
identified as a gene induced by Epstein-Barr virus.47 CCR7 is also
expressed by many cancers.48 The CCL21–CCR7 chemokine
ligand–receptor axis promotes cancer cell metastasis specifically to
the lymph nodes.49 In breast cancer cells, decreased let-7a acts as a
tumor suppressor by suppressing CCR7 expression.50

MICRORNAS TARGETING FRIZZLED HOMOLOG PROTEINS

Frizzled homolog proteins (FZDs) are seven-transmembrane
receptors, and are activated by the wingless/int1 (WNT) family of
lipoglycoproteins.51 Eleven members of FZD (FZD1–FZD10, and
SMO) have been identified in humans.51 Intracellular signaling
mediated by WNTs/FZDs pathway plays pivotal roles in normal
embryonic development, stem cell differentiation, organogenesis and
patterning.51 In many cancers, expressions of some FZDs are
aberrantly up-modulated, therefore activating the Wnt signaling
pathway, which is associated with cancer malignancy and poor patient
prognosis.52 FZD7, which is frequently overexpressed in several
cancer,52 is regulated by several miRNAs, such as miR-1 in breast
cancer,53 miR-23b in colon cancer,54 miR-27a and miR-199a-5p in
HCC,55,56 miR-27b in gastric cancer57 and miR-613 in prostate
cancer.58 Besides, it has been reported that FZD2 expression is
inhibited by miR-203 in lung cancer,59 FZD4 by miR-493 in bladder
cancer,60 FZD5 by miR-124 in renal cell carcinoma,61 FZD6 by
miR-199a-5p in colorectal cancer62 and FZD8 by miR-100 in breast
cancer,63 all of which may represent direct binding interaction.
MiR-338-3p suppresses several oncogenic activities by targeting
smoothened (SMO), a component of the hedgehog signaling pathway
which is conserved from flies to humans,64 in HCC65 and colorectal
cancer.66 MiR-320 also regulates SMO in glioma biological behaviors
and stemness.67
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MICRORNAS TARGETING ADHESION-GPCRS

So far, 33 adhesion-GPCRs are identified in humans, and are classified
in nine families characterized by the molecular structure of their
seven-transmembrane domains and extracellular domain.68 Unlike the
classic GPCRs, adhesion-GPCRs have an unusual long N-terminal
extracellular domain.69 Many adhesion-GPCRs are still orphan
receptors. Recently, several members of the adhesion-GPCRs have
received considerable attention, as their functions are often associated
with tumorigenesis.70 For example, CD97/ADGRE5 belonging to the
EGF-TM7 family71 is overexpressed in several cancers, such as oral,72

esophageal,73 gastric,73 pancreatic73 and colorectal cancers.74

CD97/ADGRE5 is reported as a direct target of tumor-suppressive
miRNA-126 in breast cancer cells.75 GPR124/ADGRA2 contributes to
gefitinib (EGFR-TKI) resistance in non-small cell lung cancer cells.76

miR-138-5p recovers gefitinib sensitivity in non-small cell lung cancer
cells by regulating GPR124/ADGRA2.76

MICRORNAS REGULATING SPHINGOSINE-1-PHOSPHATE

(S1P) RECEPTORS

Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid
mediator. Five isoforms of cell-surface GPCRs, S1P1–S1P5, mediate
the actions of S1P in many types of cell. A large number of studies have
demonstrated that S1P-associated signaling pathways regulate many
processes important for cancer development, such as cell proliferation,
survival, migration, invasion, angiogenesis and lymphangiogenesis.77

MiRNA-148a inhibits migration and invasion of ovarian cancer78 and
HCC79 cells via targeting S1P1. MiRNA-363-mediated downregulation
of S1P1 suppresses the proliferation of HCC cells.80

Table 1 microRNAs targeting G-protein-coupled receptors

GPCR subfamilies Target GPCR gene Regulator miRNA Cancer type Reference

Chemokine receptors CCR6 miR-150 Advanced cutaneous T-cell lymphoma 42

Chemokine receptors CCR6 miR-518a-5p Colorectal cancer 43

Chemokine receptors CCR7 let-7a Breast cancer 47

Chemokine receptors CXCR4 miR-1 Thyroid cancer 93

Chemokine receptors CXCR4 miR-126 Colorectal cancer 172

Chemokine receptors CXCR4 miR-133b Colorectal cancer 25

Chemokine receptors CXCR4 miR-139 Gastric cancer 20

Chemokine receptors CXCR4 miR-139 Laryngeal squamous cell carcinoma 21

Chemokine receptors CXCR4 miR-146a Breast cancer 17

Chemokine receptors CXCR4 miR-146a Kaposi's sarcoma 18

Chemokine receptors CXCR4 miR-146a Acute myeloid leukemia 19

Chemokine receptors CXCR4 miR-150 Pancreatic cancer 30

Chemokine receptors CXCR4 miR-302-367 cluster Glioblastoma multiforme 29

Chemokine receptors CXCR4 miR-302a Breast cancer 28

Chemokine receptors CXCR4 miR-494-3p Prostate cancer 26

Chemokine receptors CXCR4 miR-494-3p Breast cancer 27

Chemokine receptors CXCR4 miR-9 Oral squamous cell carcinoma 23

Chemokine receptors CXCR4 miR-9 Nasopharyngeal carcinoma 22

Chemokine receptors CXCR6 miR-361-5p Hepatocellular carcinoma 33

Chemokine receptors CXCR7 miR-101 Hepatocellular carcinoma 37

Chemokine receptors CXCR7 miR-430 Bladder cancer 38

Class Frizzled GPCRs FZD2 miR-203 Lung cancer 56

Class Frizzled GPCRs FZD4 miR-493 Bladder cancer 57

Class Frizzled GPCRs FZD5 miR-124 Renal cell carcinoma 58

Class Frizzled GPCRs FZD6 miR-199a-5p Colorectal cancer 59

Class Frizzled GPCRs FZD7 miR-23b Colorectal cancer 51

Class Frizzled GPCRs FZD7 miR-1 Breast cancer 50

Class Frizzled GPCRs FZD7 miR-199a-5p Hepatocellular carcinoma 53

Class Frizzled GPCRs FZD7 miR-27a Hepatocellular carcinoma 52

Class Frizzled GPCRs FZD7 miR-27b Gastric cancer 54

Class Frizzled GPCRs FZD7 miR-613 Prostate cancer 55

Class Frizzled GPCRs FZD8 miR-100 Breast cancer 60

Class Frizzled GPCRs SMO miR-338-3p Hepatocellular carcinoma 62

Class Frizzled GPCRs SMO miR-338-3p Colorectal cancer 63

Class Frizzled GPCRs SMO miR-326 Glioma 64

Adhesion Class GPCRs ADGRA2 (GPR124) miR-138-5p Non-small cell lung cancer 73

Adhesion Class GPCRs ADGRE5 (CD97) miR-126 Breast cancer 72

Angiotensin receptors AGTR1 miR-155 Endometrial cancer 80

Angiotensin receptors AGTR1 miR-410 Pancreatic cancer 81

Endothelin receptors ETAR miR-30a Ovarian carcinoma 84

G-protein-coupled estrogen receptor GPER (GPR30) miR-424 Endometrial cancer 86

Bradykinin receptors BDKRB2 miR-129-1-3p Gastric cancer 88

Class C Orphans GPRC5A miR-103a-3p Pancreatic cancer 91

Bombesin receptors GRPR miR-335/miR-363 Neuroblastoma 90
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ADDITIONAL GPCRS TARGETED BY MICRORNAS

The renin–angiotensin system is not only an important regulator of
cardiovascular and hydro-electrolyte homeostasis, but also has been
reported to be involved in some cancer development.81,82 The effects
of angiotensin II (Ang II) are mediated by Ang II type 1 (AGTR1) and
Ang II type 2 (AGTR2) receptors.82 AGTR1 is regulated by miR-155 in
endometrial cancer,83 and by miR-410 in pancreatic cancer.84

Endothelin receptors are activated by the small bioactive peptides of
21 residues, endothelins 1–3 (ET1–ET3).85 ET1 receptors (ETAR and
ETBR) can activate several signaling pathways in both G-protein-
dependent and G-protein-independent manner via complexes with
β-arrestin (β-arr)-1 or -2.85 ETAR and ETBR are aberrantly over-
expressed in many cancers.86 MiR-30a regulates ETAR expression, and
reverses chemoresitance in epithelial ovarian cancer cells.87

The G-protein-coupled estrogen receptor-1 (GPER1) participates in
the physiology of the reproductive, cardiovascular and central nerve
system, but GPER1 is also involved in many estrogen-related diseases,
including cancers of the reproductive system, male fertility, cardio-
vascular disorder and autoimmune diseases.88 MiR-424 regulates
GPER1 expression, and suppresses E2 (17β-estradiol)-induced cell
proliferation in endometrial cancer cells.89

Many studies have showed that kinin receptors are involved in
cancer progression.90 Both kinin receptors, BDKRB1 and BDKRB2,
are aberrantly expressed in a variety of cancers and cancer cells.90

MiR-129-1-3p regulates BDKRB2 expression, which leads to suppress
cell migration activity in gastric cancer cells.91 Gastrin-releasing
peptide (GRP) appears to be involved in the growth of several
neoplasms. GRP receptors (GRP-Rs) are expressed in a variety of
cancer cells and have limited distribution in normal human tissue.92

MiR-335 and miR-363 can contribute to neuroblastoma tumorigenesis
and metastasis via regulating GRPR.93

MiR-103a-3p targets the 5′ UTR, not 3′ UTR, of GPRC5A (class C)
in pancreatic cancer cells.94 So far, the findings that the miRNA
negatively regulates the expression of the target mRNA in a
seed-sequence-dependent manner for the 5′ UTR of mRNAs are quite
few.94

These microRNAs targeting G-protein-coupled receptors are
summarized in Table 1.

MICRORNAS REGULATING GPCR LIGANDS

Chemokines
C-X-C motif chemokine 12 (CXCL12/SDF-1), which is a ligand for
CXCR4 and CXCR7, is frequently overexpressed in various cancer
types, and its aberrant expression promotes proliferation, migration
and invasion through multiple signal pathways.95 CXCL12 is regulated
by miR-1 in thyroid cancer,96 miR-101 in cancer-associated fibroblast
in lung cancer,97 exosomal miR-126 in chronic myelogenous
leukemia98 and miR-126/miR-126* in breast cancer.99 C-X-C motif
chemokine 1 (CXCL1), also known as melanoma growth stimulatory
activity, is secreted by human melanoma cells, which was found in
1988.100 CXCL1 has tumorigenic potential and is implicated in
melanoma pathogenesis.101 Overexpression of CXCL1 is reported
in HCC,102 gastric,103 breast,104 bladder105 and prostate cancer.106

MiR-141 regulates CXCL1 expression, which attenuates CXCR2-
dependent signaling and then suppresses tumor growth and metastasis
mediated by the recruitment of regulatory T-cells in non-small cell
lung cancer.107

Interleukin-8 (IL-8/CXCL8) is one of the major mediators of the
inflammatory response. IL-8 activates multiple intracellular signaling
pathways via two cell-surface GPCRs, CXCR1 and CXCR2. IL-8
induces tumor angiogenesis, tumorigenesis and metastasis of cancer

cells in numerous xenograft and orthotopic in vivo models.108 IL-8 is
regulated by miR-520b in breast cancer,109 miR-23a in nasopharyngeal
carcinoma110 and the miR-302 cluster in gastric cancer.111

The CXCL16 interacts with the chemokine receptor CXCR6.112

Trans-membranous CXCL16 inhibits cell proliferation while soluble
CXCL16 promotes cell proliferation and migration.35 MiR-451 inhibits
cell growth and invasion activity by regulating CXCL16 in
osteosarcoma.113

CC chemokine cysteine motif chemokine ligand 20 (CCL20), also
known as liver and activation-regulated chemokine (LARC), or
macrophage inflammatory protein-3alpha (MIP-3α), is the only
chemokine interacting with CC chemokine receptor 6 (CCR6).114

A number of studies have drawn attention to the CCL20/CCR6
pathway to play a role in the initiation, progression of various cancer
entities.115 CCL20 is regulated by miR-21 in colorectal116 and cervical
cancer cells.117 RGS16 functions as GTP-activating proteins for Gα
subunits, promoting the inactivation of Gα-GTP. RGS16 is a negative
regulator of SDF-1-CXCR4 signaling.118 miR-181a regulates RGS16
expression, and promotes tumor angiogenesis and metastasis in
chondrosarcoma.119

Wnt ligands and Wnt-associated molecules
Wnt ligands (Wnts) comprise a large family of secreted
glycoproteins.120 Wnts are cysteine-rich and highly hydrophobic.120

In the well-known canonical Wnt signaling pathway, Wnt binding to
Fzd and low-density lipoprotein receptor-related protein-5 or -6
(LRP5/6) co-receptors stabilizes β-Catenin protein, followed by the
β-Catenin is shuttled into the nucleus where it affects the transcription
of target genes.120 Dickkopf-related proteins (Dkks) antagonize the
canonical Wnt signaling pathway by inhibiting the interaction between
Wnt and LRP5/6.121 The receptor tyrosine kinase-like orphan
receptors (RORs) are transmembrane proteins that are part of the
receptor tyrosine kinase (RTK) family.122 Wnt-5a and ROR2 mediate
non-canonical Wnt signaling pathway.123

Wnt-1 is negatively regulated by miR-200b and miR-22 in gastric
cancer,124 and by miR-148a in HCC125 and breast cancer cells.126

Mir-26a regulates Wnt-5a, and inhibits cell proliferation, metastasis
and epithelial mesenchymal transition and induces G1 phase arrest in
prostate cancer cells.127 miR-329 and miR-410, within the chromo-
some 14q32.2 miRNA cluster, regulate Wnt-7a resulting in the
attenuation of the Wnt-β-Catenin signaling pathway in oral SCC.128

Wnt-16 is regulated by miR-374b in T-cell lymphoblastic lymphoma,
where Wnt-16 signaling is involved in cell proliferation and anti-
apoptotic activity.129 LRP6 is regulated by multiply microRNAs
including miR-126 in thyroid cancer130 and HCC,131 miR-183 in
retinoblastoma,132 miR-202 in HCC,133 miR-513c in glioblastoma134

and miR-610 in HCC.135 LRP1 interaction with the FZD1 is regulated
by miR-205 in dermatofibrosarcoma protuberans.136 Dkk-3, which is
considered to act as a tumor suppressor, is regulated by miR-183 in
prostate cancer,137 miR-582-3p in lung cancer138 and miR-17-92
in neuroblastoma.139,140 ROR1, a non-canonical Wnt receptor,
is regulated by miR-382 in ovarian cancer,141 whereas ROR2 is
regulated by miR-124 in osteosarcoma.142

microRNAs regulating Shpk1
S1P is produced intracellularly by two sphingosine kinase isoenzymes,
sphingosine kinase type 1 (SphK1) and type 2 (SphK2).143 Of the two
SphKs, SphK1 has been shown to be involved in multiple important
processes contributing to cancer progression.144 On the other hand,
little is known of the biological functions of SphK2, especially in
cancer.144 Sphk1 is regulated by miR-124 in gastric145 and ovarian

GPCRs and microRNAs in human cancer
N Nohata et al

90

Journal of Human Genetics



cancer,146 miR-101 in colorectal cancer,147 miR-506 in HCC148 and
miR-125 in bladder cancer.149

microRNAs regulating heterotrimeric G proteins
Heterotrimeric G proteins play essential roles when the ligand-GPCR-
mediated signaling happens, such as the sensation of smell, light and
taste to chemotaxis, inflammation and the coordination of immune
responses.150 These signaling reactions commonly occur in fast and
short-lived manner. Recent advanced technologies on cancer genome
sequencing have revealed an unexpected high frequency of mutations
and aberrant expression in G proteins in most tumor types.13 Among
the coding genes of Gαi subunits, GNAI1 acts as a suppressor of cell
migration and invasion activity in vitro, and it is regulated by

miR-320a/c/d in HCC cells.151 miR-138 downregulate GNAI2 expres-
sion, resulting in a reduction of cell proliferation and induction of cell
cycle arrest and apoptosis in tongue SCC.152 On the contrary, GNAI2
act as metastasis suppressor in HCC, and is regulated by miR-30d.153

GNAI3 also functions as a metastasis suppressor in HCC, and is
controlled by miR-222.154 Oncogenic GNA13 is also regulated by
multiple microRNAs, including miR-182 and miR-200, which act
synergistically in prostate cancer,155 miR-31 in breast cancer156 and
miR-29c in colorectal cancer.157

These microRNAs targeting GPCR signaling-associated molecules
are summarized in Table 2.

microRNAs regulated by G proteins and GPCR signaling
An increasing number of reports have revealed regulatory mechanisms
controlling the expression of miRNAs. Specifically, some miRNAs
are under the control of GPCRs and G proteins, functioning as
downstream targets of GPCRs. For example, multiple studies have
used array-based genome-wide approaches to interrogate miRNAs
whose abundance is affected after stimulating GPCRs.
In breast cancers, regulation of miR-148a through GPER has been

reported.158,159 The tumor-suppressive role of miR-148a was
documented in both estrogen receptor-positive breast cancers and
triple negative breast cancers.158,159 Interestingly, it was observed that
E2-GPER downregulates miR-148a, and that miR-148a in turn
downregulates another non-coding RNA, HOTAIR.158 Consequently,
E2-GPER upregulates HOTAIR, promoting breast cancer migration.
Another study found that miR-144 is induced by GPER through
the PI3K/ERK1/2/Elk1 pathway in breast cancer, HCC and
cancer-associated fibroblasts.160 As for HCC, the upregulation of
oncogenic miR-21 is induced by dehydroepiandrosterone-GPER
signaling through mitogen-activated protein kinase or the PI3K/AKT
pathway.161

miR-518c-5p and let-7a are under the regulation of CXCL12
(SDF-1)–CXCR4 signaling in oral cancer and acute myeloid leukemia,
respectively.162,163 Detailed experiments were performed to show
CXCR4–Yin Yang 1 (YY1)–let-7a–Myc/BCLXL signaling induced
chemoresistance in acute myeloid leukemia cells.163

CCL5 promotes angiogenesis in chondrosarcoma by downregulat-
ing miR-199 or miR-200b, which target VEGF.164,165 As for miR-200b,
the downregulation is induced via PI3K/Akt signaling.164 This can in
turn contribute as in the progression of this highly malignant tumor.
Neurotensin (NTS) and its high affinity receptor (NTSR1) are

involved in the progression of several malignant tumors and could
represent a potential target for cancer treatment.166 NTS/NTSR1
signaling activates the transcription factor c-Myc in glioblastoma
cells, which results in negative regulation of tumor-suppressive
miR-29b-1.167

COX2 elevates oncogenic miR-526b in breast cancer by activation of
the prostaglandin E2 (PGE2) receptor EP4 (PTGER4).168 Stable
overexpression of miR-526b in non-metastatic breast cancer cell lines
resulted in increased cellular migration, invasion and epithelial
mesenchymal transition phenotype.168 COX2 expression and PGE2
production also upregulates oncogenic miR-17-92 via c-Myc activation
in non-small cell lung cancer cells.169

MiRNAs under the regulation of GNA12 have been analyzed
in HCC. Activated GNA12 downregulates miR-122 via HNF4α
ubiquitination, and downregulation of miR-122 upregulates c-Met,
a potent growth factor receptor in the liver, which can contribute to
the progression of this cancer type.170 In parallel, activated mutants of
GNA12 (Gα12QL) upregulate miR-135b via JunB/AP-1, and miR-135b
regulates FOXO1 directly.171 Furthermore, Gα12QL downregulates

Table 2 microRNAs targeting GPCR signaling-associated molecules

Target ligands

or related

molecules

Regulator

miRNA Cancer type Reference

CCL20 miR-21 Colorectal cancer 113

CCL20 miR-21 Cervical cancer 114

CXCL1 miR-141 Non-small cell lung cancer 104

CXCL12 miR-1 Thyroid cancer 93

CXCL12 miR-101 Cancer-associated fibroblasts 94

CXCL12 miR-126 (exosomal) Chronic myelogenous leukemia 95

CXCL12 miR-126, miR-126* Breast cancer 96

CXCL16 miR-451 Osteosarcoma 110

IL-8 miR-23a Nasopharyngeal carcinoma 107

IL-8 miR-302 cluster Gastric cancer 108

IL-8 miR-520b Breast cancer 106

Dkk-3 miR-183 Prostate cancer 134

Dkk-3 miR-582-3p Lung cancer 135

Dkk-3 miR-92 Neuroblastoma 136

GNA13 miR-182, miR-200a Prostate cancer 152

GNA13 miR-31 Breast cancer 153

GNA13 miR-29c Colorectal cancer 154

GNAI1 miR-320a/c/d Hepatocellular carcinoma 148

GNAI2 miR-138 Tongue squamous cell carcinoma 149

GNAI2 miR-30d Hepatocellular carcinoma 150

GNAI3 miR-222 Hepatocellular carcinoma 151

LRP1 miR-205 Dermatofibrosarcoma protuberans 133

LRP6 miR-126 Thyroid cancer 127

LRP6 miR-126-3p Hepatocellular carcinoma 128

LRP6 miR-513c Glioblastoma multiforme 131

LRP6 miR-610 Hepatocellular carcinoma 132

LRP6 miR-202 Hepatocellular carcinoma 130

LRP6 miR-183 Retinoblastoma 129

RGS16 miR-181a Chondrosarcoma 116

ROR1 miR-382 Ovarian cancer 138

ROR2 miR-124 Osteosarcoma 139

Wnt-1 miR-200b, miR-22 Gastric cancer 121

Wnt-1 miR-148a Breast cancer 123

Wnt-1 miR-148a Hepatocellular carcinoma 122

Wnt-16 miR-374b T-cell lymphoblastic lymphoma 126

Wnt-5a miR-26a Prostate cancer 124

Wnt-7b miR-329, miR-410 Oral squamous cell carcinoma 125

Sphk1 miR-124 Gastric cancer 142

Sphk1 miR-124 Ovarian cancer 143

Sphk1 miR-101 Colorectal cancer 144

Sphk1 miR-506 Hepatocellular carcinoma 145

Sphk1 miR-125 Bladder cancer 146
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miR-194, regulating MDM2, which destabilizes FOXO1.171 The
FOXO1 transcription factor functions as a regulator of cell cycle
progression. Taken together, Gα12QL inhibits the tumor-suppressive
role of FOXO1 by miRNA-mediated signals.171

KS is currently a major global health problem as an AIDS-defining
angioproliferative neoplasm.172 As previously mentioned, KSHV-
encoded vFLIP K13 induces NF-kappaB activity, then upmodulates
miR-146a expression, which results in CXCR4 suppression.21

Table 3 microRNAs regulated by G proteins and GPCR signaling

Upstream GPCRs and/or ligands

and/or related molecules Effector miRNA Effect Cancer type Reference

CCL5 miR-199 Downregulating Chondrosarcoma 162

CCL5 miR-200b Downregulating Chondrosarcoma 161

CXCL12–CXCR4 let-7a Downregulating Acute myeloid leukemia 160

CXCL12–CXCR4 miR-518c-5p Upregulating Oral cancer 159

GPER (GPR30) miR-21 Upregulating Hepatocellular carcinoma 158

E2-GPER-HOTAIR miR-148a Downregulating Breast cancer 155

E2-GPER miR-148a Downregulating Breast cancer 156

E2-GPER-PI3K/ERK1/2/Elk1 miR-144 Upregulating Breast cancer 157

GNA12 miR-122 Downregulating Hepatocellular carcinoma 167

GNA12 miR-135 Upregulating Hepatocellular carcinoma 168

GNA12 miR-194 Downregulating Hepatocellular carcinoma 168

KSHV-vGPCR miR-34 Upregulating Kaposi's sarcoma 171

KSHV-K13 miR-146a Upregulating Kaposi's sarcoma 18

NTS-NTSR1-c-Myc miR-29b-1 Downregulating Glioblastoma 164

COX2-PTGER4 miR-526b Upregulating Breast cancer 165

COX2-PGE2-c-Myc miR-17-92 Upregulating Non-small cell lung cancer 166

Figure 1 Scheme of oncogenic CXCL12–CXCR4–Gi signaling and its miRNAs regulation in human cancer. CXCL12–CXCL4–Gi signaling is associated with
chemotaxis, invasion, angiogenesis, and cell proliferation contributing tumor initiation and cancer progression. Many tumor-suppressive miRNAs control the
expression of those molecules across multiple human cancers. Blue miRNAs are downregulated, and red miRNAs are upregulated in cancer. AC, adenylyl
cyclase; AML, acute myeloid leukemia; cAMP, cyclic adenosine monophosphate; CML, chronic myelogenous leukemia; SCC, squamous cell carcinoma. A full
color version of this figure is available at the Journal of Human Genetics journal online.
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The KSHV-encoded chemokine receptor vGPCR (KSHV-vGPCR)
acts as an oncogene in KS development.173 KSHV-vGPCR induces
upregulation of miR-34a, which induces genomic instability.174

These microRNAs regulated by G proteins and GPCR signaling are
summarized in Table 3.

CONCLUSION

The availability of large expression data sets of miRNAs and
bioinformatics tools to analyze patterns of changes in their relative
abundance has contributed to an increased understanding of the role
of miRNAs in cancer biology, and in the control of tumor-associated
pathways. Dysregulation of G-protein and GPCR signaling leads to the
initiation and progression of malignant tumor growth and their
metastatic spread. Here, we have reviewed the individual functions
of miRNAs that are regulated by GPCRs and GPCR signaling-
associated molecules, or that regulate the expression and activity of
GPCRs, their endogenous ligands, or their coupled heterotrimeric G
proteins. To illustrate the molecular mechanism involved in the
interplay between GPCRs and miRNAs in cancer, we provide a
scheme depicting the CXCL12–CXCR4–Gi signaling network and
miRNAs regulating this signaling system in Figure 1, as an example.
An emerging body of evidence shows a plethora of miRNAs that act as
fine tuners of GPCR signaling pathways in multiple human cancers.
Therefore, understanding the novel mechanism involved and the
interplay between GPCRs and miRNAs might be exploited in the
future for cancer diagnosis, prevention and treatment.
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