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Noncoding RNA and colorectal cancer:
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Yoshiaki Kita, Keiichi Yonemori, Yusaku Osako, Kenji Baba, Shinichiro Mori, Kosei Maemura and
Shoji Natsugoe

The use of novel sequencing and high-throughput techniques has become widespread, and are now readily available to

obtain the comprehensive transcription profile of the human genome. Noncoding RNAs (ncRNAs) are transcripts that have no

apparent protein-coding capacity, but they have important roles in human physiology. Most research in this area has focused on

micro-RNAs. However, the role of long ncRNAs (lncRNAs) as drivers of tumor suppression and oncogenic functions has recently

been examined in numerous cancer types. Epigenetic alterations can reportedly deregulate the expression of any type of

transcript. However, the exact mechanisms of epigenetic regulation of lncRNA are still unknown. In this review, the authors

primarily focus on the epigenetic effects modulating ncRNA in colorectal cancer (CRC). The authors specifically discuss

examples of oncogenic ncRNA in CRC pathobiology, as well as its extended diagnosis, prognosis and therapy.
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INTRODUCTION

The best-studied sequences in the human genome have generally been
protein-coding genes that correspond to only 1.5–2.0% of the entire
genome.1 Recently, non-protein-coding regions have emerged as new
areas of study, and it is now clear that these regions of the genome
have essential functions in normal development and in diseases,
including cancer. Most of the sequences in the transcriptome are
noncoding RNAs (ncRNAs) that are not translated into proteins. They
can be classified as either small ncRNAs including most microRNAs
(miRNAs) or as long ncRNA (lncRNA). The latter comprises a very
heterogeneous group of ncRNAs that are more than 200 nt in length.
They include, among others, long intergenic ncRNAs (lincRNAs),
transcribed ultraconserved regions (T-UCRs), pseudogenes and
antisense RNAs.2

Expression of ncRNA is regulated by epigenetic changes that consist
of DNA methylation and histone modifications. DNA methylation
represses gene expression in cancer cells. Methylation, which is
reversible, occurs on cytosines at carbon position 5. Methylation is
carried out by three DNA methyltransferases (DNMT1, DNMT3A or
DNMT3B). Methylation of promoter-associated CpG islands usually
reduces transcription levels of the corresponding gene in cancer cells.3

Histone proteins are the main constituents of chromatin and
undergo posttranslational modifications. This modification determines
and allows access to chromatin. The early replicating form, called
euchromatin, is accessible, and the late replicating form, called
heterochromatin, is inaccessible. These histone modifications
constitute the ‘histone code’. For instance, euchromatin accompanies
acetylation of histones H3 and H4 and methylation of lysine 4 of

histone H3 (H3K4me), whereas di- or trimethylation of lysine 9 of
histone 3 (H3K9me) occurs in heterochromatin. Moreover, several
kinds of histone deacetylases (HDACs) and histone methyltransferases
influence and control these histone modifications. Eventually,
trimethylating histone H3 lysine 27(H3K27me3) regulates the
silencing of the epigenetic gene in conjunction with the polycomb
repressive complex 2 (PRC2).4

Alterations in the epigenetic regulation of ncRNA are pivotal in the
pathogenesis of human disease.5 This is not surprising as DNA is
globally hypomethylated in cancer and there are alterations in the
epigenetic regulation of ncRNAs in the pathogenesis of cancer.5 Both
miRNAs and long ncRNAs are modulated by hypermethylation6,7 or
hypomethylation.8 Furthermore, many lncRNAs interact with histone-
modifying and chromatin-remodeling complexes, and miRNAs can
target genes that are important in the epigenetic machinery.9

Although Vogelstein’s model has been accepted worldwide as an
important paradigm whose sequence of genetic change leads to
colorectal cancer (CRC), and despite the progress being made in
basic and clinical research and the numerous published reports, the
roles and mechanisms of action of ncRNAs in the pathogenesis of
CRC are still unclear. In particular, lncRNAs are poorly characterized,
and it is still a key challenge to understand their precise roles in
relation to CRC biological characteristics. In this review, despite
being just the tip of the iceberg, we focus on epigenetics and
the roles of miRNAs and lncRNAs in the tumorigenesis of CRC,
including possible diagnostic and/or prognostic factors. Moreover, we
summarize new prospects for miRNAs and long ncRNAs and describe
mechanisms that cause abnormal expression of ncRNAs in CRC.
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miRNAS AND CANCER

The most widely studied and well-known classes of ncRNAs are
miRNAs, which are small ncRNAs that are only ~ 22 nt in length.
They function through gene silencing after transcription by modulat-
ing mRNA and translating it into proteins.10 miRNAs control the
translation of over 60% of protein-coding genes. Some miRNAs
control the gene expression to bind specific individual targets; more-
over, others can operate as central regulators of a gene expression
procedure. For instance, specific miRNAs control the expression
levels of hundreds of genes simultaneously, cooperatively and
comprehensively.10 The first relation between cancer and ncRNAs
was investigated by Calin et al. in 2002. They disclosed the genome
region in which transcripts miR-15 and miR-16 were found to be
frequently absent in chronic lymphocytic leukemia (CLL).11 Right
after that study, the first miRNA microarray emerged,12 and it
successfully revealed miRNA profiling in miRNA. These profiles were
able to distinguish tumors from normal counterparts.13–15

Calin et al. used comprehensive microarray profiling using 94
samples comprising 94 patients with CLL and constituted the
interesting gene expression panel of nine miRNAs. These expression
patterns, which vary and depend on different phases and breakpoints
of disease progression in CLL, may implicate the timing of the
beginning of treatment.16

Recently, lliou et al. found that DICER, which is necessary for the
growth and maturation of miRNA, has an important role in stem cell
properties. Attenuation of DICER1 in colon cancer cell lines increased
the stem cell markers for colon cancer and decreased several specific
miRNAs. Both in vitro and in vivo studies disclose that knockdown of
DICER1 induces carcinogenesis and metastatic ability without pro-
liferation itself, which strongly implicates its role in cancer stem cells.17

EPIGENETICS AND MIRNA IN CRC

To clarify the mechanisms that underlie the aberrant miRNA
expression in malignancy, numerous studies have demonstrated the
regulation system of miRNA. Currently, it is reported that miRNAs are
subject to the same epigenetic regulatory mechanisms as conventional
protein-coding genes. Moreover, aberrant epigenetic regulation—for

example, CpG island hypermethylation—affects abnormal miRNA
expression in cancers (Figure 1a). Moreover, a subgroup of these
miRNAs have an effect on the expression of epigenetic effectors—for
instance, DNMTs, HDACs and polycomb genes—and they are named
epi-miRNAs (Figure 1b).
Fabbri et al. first investigated the existence of epi-miRNAs in lung

cancer cell lines. They reported that miR-29a, -29b and -29c directly
targeted and controlled the epigenetic regulator.18 Re-expression of
miR-29 disrupted DNA methylation and led to general hypomethyla-
tion status. Moreover, in an AML model, Garzon et al.19 reported that
miR-29b directly targeted SP1, which is one of the trans-activators of
the DNMT1 gene, and indirectly silenced DNMT.

miR-34
A member of the miR 34 family, miR 34a resides in the second exon
of EF570049, which has a p53-binding site and CpG island in the
promoter region. Despite DNA methylation of the EF570049 promoter
CpG island in CLL, miR-34a was upregulated. Importantly, loss of
methylation and enrichment of H3K4me3 were observed in a region
12 Kb upstream of the miR-34a coding sequence.20

The miR-34 family has been attracting attention because of the
substantial correlation and cross-talk with p53.9,21 Indeed, dysfunction
of p53 influences and induces depressed miR-34a, the cross-talk of
which was observed in many types of human diseases including
CRC.22,23 miR-34a can affect CRC invasion and metastasis in
conjunction with IL6R, ZNF281, MET, snail family zinc finger 1 and
2 (SNAI1, SNAI2) and β-catenin (CTNNB1).24–27

Lujambio et al. used three frequent aggressive cell lines under
treatment with 5-AZA and identified cancer-specific CpG island
hypermethylation of the promoter lesion with three transcribed
miRNAs: miR-148a, miR-34b/c and miR-9. The rescue experiment
of the miR-34b/c cluster in cancer cell lines with epigenetic depression
reduced the cell motility and metastatic frequency in an in vitro
study.28 miR 34b/c resides on chromosome 11 as a dicistronic cluster
within the transcription unit BC021736, and only the expression of
miR-34b/c was affected by pharmacologic demethylation. Moreover,
the miR-34b/c cluster is epigenetically regulated in the colon cancer

Figure 1 Epigenetic regulation by microRNAs (miRNAs). (a) CpG island hypermethylation is associated with silencing of miRNAs in human cancer.
(b) Epi-miRNAs target effectors of the epigenetic machinery directly or indirectly.
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cell line HCT116.29 Indeed, Siemens et al. showed that, in CRC, the
presence and frequency of metastasis in clinical patients is significantly
correlated with attenuated miR-34a expression, which was induced by
abounding CpG methylation of the promoter lesion of miR- 34a and
miR-34b/c.26

miR-200
The miR-200 family consists of five submembers of miRNAs,
miR-200a, miR-200b, miR-200c, miR-429 and miR-141, which are
transcripted from two different genome locations, chromosome 1 and
chromosome 12.30,31 These members maintain an epithelial phenotype
and deregulate the epithelial-to-mesenchymal transition (EMT). The
attenuation of miRNA is associated with mesenchymal features as
observed in EMT and tumor progression, including an aggressive
cancer phenotype.32 In breast and prostate cancer cell lines, the
observed abnormal DNA methylation of the miR-200c and miR-141 at
CpG island is strongly associated with their inadequate silencing.
Moreover, epigenetic regulation of this miRNA cluster is conserved
evolutionarily according to mouse experiments.33 In lung cancer cell
lines, there is no variation with miRNA expression under treatment
with demethylating agents or HDAC inhibitors.34

In CRC, miR-200c also has a pivotal role (that is, EMT
phenomenon) with respect to cancer aggressive ability, including cell
proliferation, invasion, migration and metastasis. Hur et al. reported
that the miR-200c expression level of the aggressive CRC clinical tissue
and high frequent metastasis CRC cell lines is attenuated significantly.
Overexpression study using transfection techniques with precursors of
miR-200c to RKO and SW620 showed that miR-200c accelerated the
proliferation of CRC cancer cells but did not affect the ability of
invasion and migration. Moreover, miR-200c targets zinc finger E-box
binding homeobox 1/2 (ZEB1/2), which is one of the EMT-associated
molecules. In CRC cell lines and clinical CRC including liver
metastasis, this reduction induced the attenuated EMT phenomenon
by E-cadherin overexpression and reduced vimentin expression.35 In
stem cell biology, miR-200c is well known as the target of SOX2, which
is essential for differentiation of embryonic stem cells. Attenuation of
miR-200c in the cancer cell line induced sphere formation, which is a
typical morphological change in stem cells and in other stem
cell-associated molecules including SOX2 via the P13K/AKT
pathway.36 According to the above reports, CRC patients with higher
miR-200c expression had significantly worse survivals compared with
patients with lower expression.37

Let-7
The let-7 family has been well known as the most popular conserved
miRNA.38 It has also been reported to have tumor-suppressive effects
in various malignancies.39,40 The let-7 family was found for the first
time to be essential for the development in Caenorhabditis elegans.
Although developed let-7 has been highly conserved until now, the
members of this family undergo changes. For instance, the human
let-7 family has 10 mature miRNAs produced from 13 precursor
sequences.41 Whereas the expression of let-7a-3 is kept low by
canonical silencing by promoter hypermethylation in normal cell
lines, the expression is released in the colon cancer cell line HCT-116
without DNMT1 and DNMT3B.8 In ovarian cancer, Lu et al.42

disclosed that hypermethylation of the promoter lesion of the
let-7a-3 was frequent and that it had a positive relation with the
expression of insulin-like growth factor-II and with prognosis.
The relationship between the let-7 family and RAS, which is one

of the most famous oncogenes, including in CRC, has been
disclosed.41,43,44 KRAS (representative RAS) has been found to be a

small monomeric GTPase and controls signal transduction with
respect to proliferation.45 RAS mutations and amplifications are also
frequently found in CRC patients,46 and it has an important role in
the sequential step toward colorectal carcinogenesis advocated by
Vogelstein.47 In the last decade, evaluation of the KRAS mutation
status was considered the gold standard to determine the presence of
the anti-EGFR antibody (that is, Cetuximab and Panitumab) in
CRC.48 Actually, Regusa et al.49 reported inhibited expression of
let-7b and let-7e in the Cetuximab-resistant CRC cell line and under
Cetuximab treatment. In later years, the polymorphism in the 3ʹ-UTR
of KRAS mRNA implied its capacity to predict outcome from CRC.
Thus far, the results have been controversial and conflicting.44,50–52

Han disclosed that the expression of let-7c conversely associated with
TMN stage, tumor metastasis and poor prognosis in primary CRC
tissue, and let-7c targets KRAS, MMP1 and PBX3 directly on the
luciferase reporter assay. Moreover, the ectopic and rescue experiment
also confirmed the tumor-suppressive function of let-7c, which
inhibits metastasis in vivo and in vitro.53 Comprehensive gene
expression analysis of miRNA by Svoboda et al has uncovered the
impact of let-7e with regard to the sensitivity and resistance to
neoadjuvant therapy.54 Overexpression of let-7e has implications in
it being a responder to CRC. Moreover, Ogata-Kawata et al. evaluated
the serum levels of some microRNAs to determine which of these
mRNAs are appropriated diagnostic tools for CRC. They identified the
miRNA group that was emitted in CRC patients' serum samples
compared with healthy volunteers.55 Taken together, the let-7 family
has the potential to elucidate CRC oncogenesis and pathogenesis,
which can lead to the development of new noninvasive diagnostic
tools in the near future.

miR-1 (epi-miRNA)
Epi-miRNAs described in the earlier paragraph are generally involved
in modulating the expression of HDACs and PRC genes. For instance,
both miR-1 and miR-140 directly bind to the mRNA of HDAC4.56,57

Moreover, Migliore et al. found that the expression of miR-1 is
attenuated in 84% of CRC tissue compared with that in corresponding
normal tissues and the expression level strongly correlates with MET,
which is overexpressed tyrosine kinase receptor for hepatocyte growth
factor, and also well known to lead to CRC aggressiveness. Moreover,
in vitro ectopic and knockdown study showed the anti-oncogenic
effect of miR-1 from assay for viability, migration and invasion caused
by MET.58

miR-101 (epi-miRNA)
EZH2 has the catalytic ability for PRC2 and accounts for
heterochromatin modification by trimethylating histone H3 lysine
27 (H3K27me3). Varambally et al. reported that the expression of
miR-101 is inhibited during cancer progression in cancer cell lines and
primary tumors related to prostate cancer and correlates with the
augmentation of EZH2 gene expression. These findings implicated
miR-101 as an epi-miRNA. This hypothesis was confirmed by
experiments in vitro and in vivo, which found that miR-101 directly
targets EZH2.59,60 In CRC, miR-101 also functions as a tumor
suppressor in both cell lines and cancer tissue.61,62 miR-101 targets
and negatively regulates prostaglandin E receptor 4 (EP4) and COX2.
In colon cancer and normal tissue, the expression level ofmiR-101 and
EP4 has inverse relation. miR-101 induced the reduction of cancer cell
proliferation and motility in ectopic and knockdown assay.63 Strillacci
et al. implied the inactivated potency for CRC progression with
miR-101. They disclosed that miR-101 exerts its effect on β-catenin
amassment in the nucleus, and then inhibits cell proliferation, invasion
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ability and survival at hypoxic conditions in conjunction with
promotion of cell adhesion-related E-cadherin and ZEB1 expression.
Taken together, this implies that miR-101 has important roles
in EMT.62

miR-148 (epi-miRNA)
DNMT3b expression is regulated by the control of miR-148a and
miR-148b. The occupying by miR-148 in the gene-coding region of
mRNA lead to transcribe several splicing variants from.64 Curiously,
the promoter region of miR-148a frequently undergoes hypermethyla-
tion as well as epigenetic regulation in several cancers.28 In CRC,
miR-148a upregulation induces apoptosis through BCL2 inhibition.65

Conversely, miR-148a downregulation in CRC is associated with
increased tumor size.66

EPIGENETIC REGULATION OF lncRNA in CRC

LncRNAs and their functions are under intense investigation.2

However, the actual mechanism has not been identified because of
the heterogeneity of lncRNAs. LncRNAs were originally recognized
as RNA molecules longer than 200 nt without coding a protein.
However, this cutoff was arbitrarily chosen and was not based on
functionality. Besides, this understanding might be sometimes too
simple and does not consider RNA purification protocols and the
overlap between lncRNAs and open reading frames.67

A recent review68 described the myriad functions of lncRNAs. Four
types of molecular mechanisms were distinguished: signals, decoys,
guides and scaffolds. Signals and decoys include those working as
molecular blocks or sponges to pull away RNA-binding proteins,
including transcription factors, chromatin modifiers or other
regulatory proteins. Guides recruit chromatin-modifying enzymes to
target genes, either in cis near the site of lncRNA production or in
trans to distant target genes and scaffolds.
Various mechanisms have been proposed to account for the

transcriptional regulation of gene expression by lncRNAs. LncRNAs
are widely accepted as mediating epigenetic modifications of DNA by
changing the chromatin status and replicating form.69 At the human

HOX loci, hundreds of lncRNAs exert and cooperate with RNA
polymerase and histone modification enzymes to modulate the
chromatin status.70 X‑chromosome inactivation is generally and
widely well known as one of the physiological processes in mammals;
the X-inactivation-specific transcript (Xist) lncRNA was investigated.
The Xist is transcribed from the X‑chromosome itself and encourages
the polycomb complex to silence the X chromosome.71 Interestingly,
Yildirim et al. found in mice that loss of Xist resulted in X reactivation
and consequent genome-wide changes. Moreover, deleting Xist
induced aberrant maturation of hematopoietic stem cells and extreme
neoplasm in myelo-proliferation and myelodysplastic syndrome.72

In addition, we should not confuse lncRNAs with lincRNAs,73

which are categorized as a subtype of lncRNA and transcribed from
intergenic regions. LincRNAs were initially described under control of
histone mark signatures, specifically trimethylation in lysine 4
(H3K4m3) and lysine 36 of histone 3 (H3K36m3 and K4K36). Nearly
3000 uncovered lincRNAs have been reported to exist in mouse and
human cell lines in the first reports about LincRNAs.73,74 However,
many unknown lincRNAs might exist and should be disclosed in other
backgrounds.75

About 20% of lincRNAs bind to PRC2 and control the gene
expression in conjunction with several polycomb proteins toward
DNA regions by varying the histone and chromatin structure and
suppressing transcription activity.74 Recent reports suggest that
lincRNAs bind directly to the polycomb proteins and constitute PRCs,
and then influence epigenetic silencing with the DNA-specific region
(Figure 2a). However, whether the lincRNA-polycomb complex is
aware of the target DNA position is still a matter of debate.76 Besides,
it is still unknown how and which transcription factors bind lincRNAs
and the relationship between RNA-binding proteins and lincRNAs as
they conduct with other noncoding RNAs.77

Hox transcript antisense intergenic RNA
HOTAIR (Hox transcript antisense intergenic RNA) is one of the most
popular lincRNAs located and transcribed from the homeobox C gene
cluster on chromosome 12, and its biological function in human

Figure 2 Examples of long intergenic RNA function. (a) Long intergenic RNAs (lincRNAs) transcribed from intergenic regions can coordinate and recruit
epigenetic or histone-modifying complexes, including polycomb repressive complexes (PRCs), via transrepression. The bottom of the panel indicates the peak
diagram for CHIP-sequence experiments identifying histone modifications: H3K4me3, trimethylation at lysine 4 of histone 3 (found near promoters);
H3K36me3, trimethylation at lysine 36 of histone 3 (found near-active transcripts). (b) Transcription of antisense-noncoding RNAs (AS-ncRNAs) from
protein-coding genes (PCGs) but in the opposite direction. This appears to regulate gene expression by epigenetic change via cis regulation.
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malignancy has been revealed among that of recent noncoding
RNAs.78 The overexpression of HOTAIR induces polycomb protein
and targets at the genome region in epithelial cancer cells.79 The
capacity for invasion and metastasis is also enhanced in these cells, and
both are subject to PRC2. Conversely, cancer invasiveness is decreased
without HOTAIR expression.80 Overall, HOTAIR may have an
important function in regulating epigenetics and in mediating cell
transformation in malignancy. CRC patients with overexpression of
HOTAIR had a poor prognosis compared with patients with a low
expression. Kogo et al.81 showed that the overexpression group among
CRC patients exhibited poorer pathological differentiation of tumor,
greater tumor sizes, more frequent liver metastasis and worse
prognosis compared with the attenuated expression group.

Colorectal neoplasia differentially expressed
Similar to HOTAIR, CRNDE (colorectal neoplasia differentially
expressed) transcribed from chromosome 16 and into multiple
transcript variants. Moreover, it has epigenetic capacity with PRC2.
In the early phase of mammalian development, CRNDE expression
levels rise, and decrease gradually after that. Therefore, it is necessary
to maintain pluripotency in mouse embryonic stem cells when
associated with CRC pathogenesis.75 CRNDE-h, one of the several
splice variants of CRNDE, is a feasible diagnostic tool with sufficient
sensitivity and specificity for distinguishing adenomas or carcinomas
from normal tissues.82

Metastasis-associated lung adenocarcinoma transcript 1
ONE of the well-known lncRNAs related to malignancy is MALAT1
(metastasis-associated lung adenocarcinoma transcript 1) on chromo-
some 11.83 It appears and functions in the nucleus and has an effect on
pre-mRNA metabolism associated with SC35 splicing domains.84

Moreover, MALAT1 has an important role in tumor suppressor
proteins.85 In addition, it has also been found to be a regulator of
E2F1, which is a crucial transcriptional factor in modulating cell
cycling and tumor-suppressor proteins.86 In vitro studies showed that
attenuation of MALAT1 affected the rate of bladder cancer cell
migration along with EMT-associated molecules—for instance,
ZEB1, ZEB2 and SNAILl. Moreover, depression of MALT1 induces
cell death at the G2/M phase with aberrant mitosis.87 Recently, Wilisz
et al. investigated and named MALAT1-associated small cytoplasmic
RNA (mascRNA) as the primary transcription product in a 3ʹ-end
processing mechanism of the MALAT1 at a 6.7-kb nuclear-retained
lncRNA and a cytoplasmic 61-nt tRNA-like ncRNA.88 Point mutations
of MALAT1 and MALAT1 RNA fragment containing mascRNA were
observed with high frequency in CRC cell lines and cancer tissues.
Interestingly, the abounding MALAT1 RNA fragment in CRC cells
promotes cell proliferation and invasion.89 Moreover, in CRC patients,
Zheng et al. reported that overexpression of MALAT1 was asscociated
with distant metastasis and worse prognosis compared with low
expression.90

Antisense ncRNA
Morris and Vogt reviewed another class of lncRNAs that includes
antisense transcripts and regulates gene expression by changes in
chromatin status.91 Antisense ncRNA transcripts from overlap
protein-coding gene in the opposite direction. Although it is widely
accepted that small-interfering RNA functions to degrade messenger
RNA generally, recent antisense ncRNA also seems to have an
important role as it modulates the epigenetic change at the promoter
site of the sense transcript (Figure 2b). The existence of antisense
transcription with epigenetic gene silencing has been investigated in

several oncogenes or tumor-suppressor genes; for example, p21,
c-Myc, p15, p53, TIE1 and PU.1 have antisense transcription and
consequent transcription gene silencing.92

As an example, ANRIL from the INK4A/ARF tumor-suppressor
locus on chromosome 9 was initially described from the genome
region where it overserved the deletion in hereditary neural system
tumors.93 ANRIL was also recognized as a polyadenylated lncRNA
antisense to the CDKN2A and CDKN2B genes. On the other hand,
two groups found that ANRIL binds to CBX7 and SUZ12 directly and
represses the INK4A/INK4B (p15) isoforms by repression of histone
modifications in vivo.94,95 However, these results were generated from
different cell types, and it is still unknown as to whether ANRIL binds
both complexes simultaneously. Future studies on CRC pathogenesis,
diagnosis and patient prognosis are warranted.

CONCLUSION

This review article primarily focused on and interpreted recent studies
on ncRNAs, emphasizing epigenetic regulation and CRC. Biological
understanding of ncRNAs initially proceeded slowly, but there is
increasing recognition that ncRNAs modulate the expression of genes
critical to the oncogenic process. In cancer, ncRNA expression
regulates epigenetic changes and is therefore involved in the entire
spectrum of disease. In particular, aberrant lncRNA function disrupts
ordinary cell biology by encouraging epigenetic depressions of down-
stream target genes. The discovery of ncRNA with high-throughput
technologies has furthered the current understanding of transcriptome
complexity. Curiously, The ENCODE consortium constituted the
profiling of a variety of cell lines for 12 histone modifications and
variants including H3K4me3 and acetylation of histone 3 at lysine 9
(H3K9ac) to better understand regulatory regions in the human
genome.96 Integrating data profiles from different sources will allow
researchers to estimate the global influence of epigenetics on the
regulation of ncRNAs and aberrant behaviors in malignancies in
general and specifically in CRC.
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