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The roles of microRNAs in the progression
of castration-resistant prostate cancer

Satoko Kojima!, Yusuke Goto? and Yukio Naya!

Prostate cancer (PCa) is one of the leading causes of cancer-related death in men. PCa is androgen-dependent, and androgen-
deprivation therapy is effective for first-line hormonal treatment, but the androgen-independent phenotype of PCa eventually
develops, which is difficult to treat and has no effective cure. Recently, microRNAs have been discovered to have important roles
in the initiation and progression of PCa, suggesting their use in diagnosis, predicting prognosis and development of treatment for
castration-resistant PCa (CRPC). Understanding the networks of microRNAs and their target genes is necessary to ascertain their
roles and importance in the development and progression of PCa. This review summarizes the current knowledge about
microRNAs regulating PCa progression and elucidates the mechanism of progression to CRPC.
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INTRODUCTION

Prostate cancer (PCa) is the most frequent malignant tumor and the
second leading cause of cancer death in men in Western countries.'
Recently, multimodality treatments have become available, but the
prognosis is still poor once a patient progresses to castration-resistant
PCa (CRPC). PCa is initially androgen-sensitive, and androgen-
deprivation therapy is widely used for metastatic PCa patients. The
disease is known to progress to CRPC about 12 months after
androgen-deprivation therapy.? As new hormonal therapies, abirater-
one (CYP-17A inhibitor)® and enzalutamide (second-generation anti-
androgen)4 have been developed to treat CRPC, and cabazitaxel
(second-generation chemotherapy)® has been developed for patients
who relapse to docetaxel. However, the effects of these new therapies
are limited, and patients progress to the lethal stage, with overall
survival increasing only 3—4 months after becoming CRPC compared
with controls. Prostate-specific antigen (PSA) is a highly specific
marker used to detect PCa, but multiple factors including genetic
variations, growth factors and androgen receptor (AR) status affect
disease progression and prognosis.®

MicroRNAs (miRNAs) are a class of small non-coding RNAs that
have important roles in cell development, differentiation, signal
transduction, cancer formation and progression by regulating the
expressions of protein-coding genes by repressing translation or
cleaving of RNA transcripts in a sequence-specific manner.” In
addition, miRNAs are known to have important roles in the regulation
of malignant transformation and development of PCa.?

Recent clinical priorities include the identification of biomarkers
that discriminate between low- and high-risk diseases to select
appropriate treatment for each patient. From the profiling of expres-
sions of miRNAs in PCa, many miRNAs are consistently upregulated

or downregulated, suggesting that certain biomarkers predict prog-
nosis in PCa. It is important to determine the target genes of these
differentially expressed miRNAs to elucidate their functions. The roles
of miRNAs in PCa can be divided by their associations with cell
proliferation, apoptosis, invasion and metastasis, epithelial-mesench-
ymal transition (EMT), cancer stemness, and AR status. First, we
introduce the expression profiles of miRNAs in PCa, and we discuss
miRNAs that have important effects on each categorized function in
PCa. We also addressed possible therapeutic roles of miRNAs and
significance of miRNAs as predictive biomarkers in CRPC.

EXPRESSION PROFILES OF MIRNAS IN PCA

To date, 2578 human mature miRNAs have been registered in the
public database (miRBase, http://microrna.sanger.ac.uk/. release
21 June 2014). A growing body of evidence suggests that expression
profiles of miRNAs in PCa are increasing in importance because of
their usefulness for diagnosis, staging, progression, and predicting
prognosis and response to treatment.” Differential expressions of
miRNAs in PCa were analyzed using current genome-based technol-
ogies, which have been able to distinguish benign prostate tissue from
PCa. Recently, miRNA signatures comparing expressions of miRNAs
in benign prostate tissue and CRPC clinical specimens obtained from
autopsy have been published.10 Upregulation of miR-96, -182, 182%,
-183, -375, 32, -26a, -181a, -93, -196a, -25, -92 and let-7i and
downregulation of miR-16, -31, -125b, -145, -149, -181b, -184, -205,
-221 and -222 were confirmed in PCa tissue.''?> Many other
biomarkers have been reported using hormone-sensitive PCa'> or
CRPC!'®!415 and serum or urine of PCa patients.!®!” It appears that
miRNAs may function as oncogenes or tumor suppressors. Oncogenic
miRNAs are upregulated, and tumor-suppressive miRNAs are
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Figure 1 Physiological roles of miRNAs in prostate cancer. miRNA targets
and functions are categorized into relation with androgen receptor, cell
survival and EMT.

downregulated in cancers. The role of miRNAs in PCa is understood
by elucidating the relationships of miRNAs and their target genes. The
miRNAs that have been shown to have important functions in PCa
and whose target genes have been determined are listed in Table 1, and
the association of each miRNA and the target genes are shown in
Figure 1.

MIRNAS ASSOCIATED WITH CELL PROLIFERATION AND
APOPTOSIS IN PCA

p53 is a tumor suppressor gene, and loss of p53 function has a critical
role in the development of PCa.'®!? p53 mutation is a late event in the
progression of PCa and is associated with advanced stage, loss of
differentiation and the transition from androgen-dependent to
androgen-independent growth.?? Shi et al?! found that miR-125b,
which is aberrantly expressed in PCa cells and tissues, promoted the
growth of PCa xenograft through downregulation of three key pro-
apoptotic genes, p53, p53 upregulated modulator of apoptosis
(PUMA) and Bakl. Thus, increased expression of onco-miR-125b
decreased p53 expression, resulting in survival of PCa cells. Insulin-
like growth factor 1 receptor (IGFIR) is important for the tumorigen-
esis and progression of PCa because of its demonstrated roles in
angiogenesis, transformation and mitogenesis.?? Recently, it has been
reported that miR-99a/let-7¢/125b cluster, which is transcriptionally
repressed by androgen-activated AR, has been shown to directly target
IGFIR in androgen-dependent PCa cells.?® This might be one of the
mechanisms by which AR induces cell proliferation in PCa.

Two miRNAs, miR-15a and miR-16-1, are located at chl3ql4, a
locus in which complete or partial genomic loss is reported in
advanced PCa and is associated with tumor initiation, progression and
metastasis.”* Downregulation of these miRNAs is significant in
advanced PCa.?® The miR-15a-miR-16-1 cluster has been reported
to regulate various oncogenes, such as B-cell lymphoma 2 (BCL2),
cyclin D1 (CCNDI) and wingless-related MMTYV integration site 3A
(WNT3A), through posttranscriptional —repression in PCa.?’
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Deregulated expression of Bcl2 and cyclins is commonly reported in
PCa, which is thought to facilitate the survival of cells under
androgen-depletion therapy. Overexpression of miR-16 in PCa cell
lines significantly inhibits the growth of prostate tumors through the
downregulation of CDK1 and CDK2 in bone, suggesting that miR-16
could represent a novel type of personalized therapy for treating
metastatic PCa.?®

Monoallelic loss or mutation of phosphatase and tensin homolog
(PTEN) is detected in the early stages of many sporadic tumors,
including PCa.?” Downregulation of PTEN, allowing activation of
phosphatidylinositol ~ 3-kinase (PI3K)-AKT pathway, results in
decreased cell apoptosis and provision of cell survival signals.?®
Recently, studies have increased to investigate the roles of miRNAs
in PTEN regulation. miR-19b, miR-23b, miR-26a and miR-92a have
been reported to promote prostate cell proliferation by targeting PTEN
and inhibiting the PI3K/AKT pathway, and cyclin D1 in vitro.?° Other
studies have also confirmed that miR-22 and the miR-106b ~ 25 cluster
are either directly or indirectly involved in the PTEN regulation in
PCa.0

It has been shown that miR-21 is one of the most common
deregulated oncomiRs, which has an important role in cancer
pathogenesis, and high expression of miR-21 is found in almost all
types of solid cancer tissues including PCa.>! Furthermore, miR-21
directly targets tumor suppressor genes such as PTEN’? and pro-
grammed cell death 4 (PDCD4)** in PCa, and miR-21 is induced by
AR with binding to the promoter site of miR-21, resulting in the
overexpression of miR-21, leading to the castration resistance pheno-
type of PCa.33> Clinically, miR-21 is a useful prognostic marker,
which is associated with PCa recurrence after radical
prostatectomy.>®37

A cell line-based genomic approach showed that the miR-221/222
cluster was upregulated in LNCaP cells in the castration-resistant
condition and was reported as oncogenic, promoting metastasis
of PCa’® One of the mechanisms of miR-221/222 on tumor
cell proliferation in PCa cell lines is directly targeting p27kipl,
a tumor suppressor gene.’® The miR-221/222 cluster is also
reported to promote cell proliferation and repress apoptosis
thorough suppressing caspase-10.40 However, genome-wide miRNA
expression signatures using clinical PCa and CRPC specimens showed
significant downregulation of the miR-221/222 cluster compared
with normal prostate tissues, suggesting these miRNAs function as
tumor suppressors in PCa patients, especially in CRPC.10121341-45
These comprehensive approaches to miRNA expression in clinical
specimens would help identify novel functional mechanisms of
miRNAs.

MIRNAS ASSOCIATED WITH CELL MIGRATION, INVASION,
EMT AND STEMNESS IN PCA

It was previously reported that miR-145 was downregulated in many
solid tumors, including PCa and functioned as a tumor
suppressor,>#® and that miR-145 was upregulated by wild-type
p53.47 miR-145 directly targets fascin homolog 1 (FSCNI)*® and
switching B-cell complex 70kDa subunit (SWAP70).** Knockdown of
FSCNI and SWAP70 suppresses cell migration and invasion in PCa
cells. Restoration of miR-145 inhibits cell proliferation in PCa. The
miR-143/145 cluster is downregulated in PCa cells, resulting in
enhanced cell migration and invasion through reduced expression of
E-cadherin, thus promoting the EMT phenotype.’®>! miR-145 targets
zinc-finger E-box binding homeobox 2 (ZEB2), as an EMT activator,
and ZEB2 directly represses the transcription of miR-145. This double-
negative feedback loop has important roles in suppressing tumor cell
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invasion, migration and EMT.>! Golgi membrane protein 1 (GOLM]I)
has also been identified as a target of miR-143/145, and it is considered
to have roles in tumor cell proliferation, migration and invasion.>?
Moreover, another tumor-suppressive miRNA, miR-27b, regulates
GOLMI, which indicates that several tumor-suppressive miRNAs
regulate GOLMI in concert.”?

Cancer stem cells (CSCs) are a subset of cancer cells that have
important roles in tumor progression and metastasis in several
cancers, including PCa.>* CD44, an adhesion molecule, is a marker
to identify CSCs, and the expression of CD44 was found to be
increased in a cell population with increased potential for tumor
initiation and metastasis.”>> Studies have clearly shown that miRs are
involved in promoting or inhibiting the stemness of CSCs;*® miR-143
and miR-145 suppress tumor sphere formation and expression of CSC
markers and stemness factors, including CD133, CD44, Oct4, c-Myc
and KIf4 in PC3 cells,’® indicating that miR-143 and miR-145 may
have a significant role in bone metastasis progression of PCa by
regulating CSC characteristics.>

miR-34a has been shown to be downregulated in CD44+ PCa cells,
and these cells have increased inhibition of clonogenic growth,
metastatic behavior and tumor regenerator.>”>® The tumor suppressor
P53 induces transcription of miR-34a, which is known to have strong
anti-tumor effects. The let-7 family also appears to have a key role in
the recurrence and progression of PCa by regulating CSCs. The let-7
family was found to be lost in PCa tissue specimens with Gleason
score 7 or higher, with consistently increased expression of Enhancer
of Zeste homolog 2 (EZH2).>® EZH2 is a putative target of the let-7
family and was demonstrated to control stem cell function in PCa
cells.>

As for neuroendocrine differentiation (NED), the AR-miR-204-
XRNT1 (5'-3" exoribonuclease 1) axis has been reported to contribute
to NED. miR-204 functions as a tumor suppressor in AR-positive
LNCaP and 22Rvl cells, but as an oncogene in PC3 and CL1 cells, and
these dual functions of miRNAs provide insight into the importance of
miRNAs in the NED mechanism in PCa.’® Analyses of NED by
miRNA approaches would reveal novel mechanisms of NED and a
therapeutic approach to neuroendocrine-differentiated PCa.

MIRNAS ASSOCIATED WITH AR STATUS
PCa is initially AR-dependent, but it eventually acquires the
AR-independent phenotype. Androgen signaling through AR is an
important pathway for progression of PCa cells. During progression to
CRPC, AR splice variant appears to increase in expression. AR-V7 is
the most common AR splice variant without a ligand-binding domain,
which is thought one of the mechanisms of progression of PCa to
CRPC. It is known that PCa patients with AR-V7 in their circulating
cancer cells do not respond to new hormonal agents (enzalutamide
and abiraterone), because of androgen-independent proliferation of
PCa cells with AR-V7.%! Several miRNAs (miR-21, -31, -34a, let-7c,
-124, -205, -185, 488* and so on)>?302% have been reported to
regulate AR expression (both full length and AR-V7), and AR can
regulate the expression of several miRs (miR-21, -27a, -34, -125b, -221,
-204, let-7).9:60:67:68

Modulation of the AR transcriptional complex and AR co-repressor
is an important mechanism in the response to androgen-deprivation
therapy and eventual development of CRPC.% miR-125b is reported to
directly target the AR co-repressor NCOR2 and subsequently activate
AR signaling.®® AR inhibition has been shown to drive miR-125b,
suggesting that androgen-deprivation therapy eventually results in the
activation of AR by suppressing NCoR by miR-125b.98
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A recent study has shown that miR-21 and AR positively regulate
each other and exert their oncogenic effects by inhibiting TGFf
receptor 11 (TGFBR2) expression.> They showed that miR-21/AR
mediates its tumor-promoting function by attenuating TGFp-mediated
Smad2/3 activation, cell growth inhibition, cell migration and apoptosis
in PCa.%® miR-124 is also reported to inhibit proliferation of PCa cells
in vitro and sensitize them to inhibitors of AR signaling.®!

Let-7c¢ has been reported to suppress AR expression by degradation
of ¢-Myc.%? The c¢-Myc is an oncogenic transcription factor that is
pathologically activated in many human malignancies including PCa,
and ¢-Myc activity is known to induce androgen-independent PCa
growth.”? Lin28 is a highly conserved RNA-binding protein known to
be overexpressed in PCa. Lin28 derepresses c-Myc by repressing let-7c,
and c¢-Myc transcriptionally activates Lin28.”' Thus, the let-7c-Myc-
Lin28 loop may have important roles in regulating AR expression and
may help target-enhanced and hypersensitive ARs in advanced PCa.%?

MIRNAS AS PREDICTIVE BIOMARKERS IN PCA

In CRPC patients, PSA is not an appropriate marker to predict
prognosis nor efficacy of treatment because poorly differentiated or
neuroendocrine-differentiated PCa often show low levels of serum
PSA. As a surrogate indicator, miRNAs can be attractive biomarkers
because they are relatively stable in biological fluids, easy to measure
and resistant to storage handling.” The aberrantly expressed miRNA
levels in tumor tissue, serum or plasma, and urine can be a promising
biomarker for PCa diagnosis, prognostic prediction or treatment
efficacy.” In this review, we categorized miRNAs as predictive
biomarkers by their origin, prostate tissue, serum or plasma,
and urine.

The expression levels of miRNAs derived from prostate tissue have
been analyzed and reported from multiple laboratories. Using radical
prostatectomy specimens, miR-21, -200a, -145, -30d, -301a, -449b and
-182 have been mentioned as biomarkers to predict biochemical
recurrence after prostatectomy.>®’2~77 Recently, combination of Glea-
son score and lymph node status with expression levels of miR-4516
and miR-601 has been reported to predict biochemical recurrence after
post-prostatectomy salvage radiation therapy, supporting the use of
miRNAs in clinically used predictive models.”® Furthermore, Goto
et al. 195379 hags reported that miR-27b, miR-222 and miR-452 could be
potential biomarkers predicting progression time to CRPC.

A growing body of evidence indicates usefulness of circulating
miRNAs in serum or plasma as biomarkers.?*8! Circulating miRNAs
can originate from tumor cells involved in tumor invasion or
metastasis. Serum miR-21, -375, -378%, 141, -201, miR-200c, -423-3p
and -210 have been reported as upregulated miRNAs in CRPC
patients.8288  Furthermore, recent RNA sequencing of exosomal
miRNAs in peripheral blood of CRPC patients indicates that higher
expression of miR-1290 and miR-375 predicted poor overall survival.®’
Several reports describe the association of expression levels of
circulating miRNAs and docetaxel chemotherapy for CRPC patients.
Lin et al.”® have revealed that non-responders to docetaxel therapy had
high pre-docetaxel levels of serum miR-200b, and pre-docetaxel levels
of serum miR-200b and post-docetaxel change in miR-20a levels were
independent prognostic factors for overall survival. In other analysis,
higher expression levels of serum miR-21 was mentioned as a
predictive factor for response to docetaxel.”! Clinically monitoring
these miRNAs would be useful to predict prognosis and sensitivity to
therapeutic modality in CRPC patients.

Excretion of miRNAs in urine has been reported in several cancers
including bladder cancer, renal cell carcinoma and PCa.”? As for long
non-coding RNA in urine, urinary prostate cancer antigen 3 (PCA3)



test is the most successfully developed marker in clinical use for PCa
diagnosis.”® Recently, it has been reported that miRNA levels in urine
from PCa patients are significantly altered compared with that from
benign prostate hypertrophy patients.”* They showed that higher levels
of urinary miR-100 and miR-200b were effective parameters to detect
the presence of PCa with PSA levels in the gray zone.’* Other
investigators identified miR-205, -214, -1825 and -484 as potential
urinary biomarkers for PCa diagnosis.”>® At present, no reports
describe association of urinary miRNA levels and risk of CRPC.
Combination of miRNAs with other conventional markers includ-
ing Gleason score, clinical stage and PSA would be a suitable practical
biomarker for patients to determine the most appropriate strategy to
treat PCa and CRPC; however, studies with larger sample size are
warranted to use miRNAs for biomarkers in the clinical settings.

MIRNAS FOR TREATMENT OF PCA

Inhibition of oncogenic miRNAs or delivery of tumor-suppressive
miRNAs could become a novel treatment strategy for PCa. As for
tumor-suppressive miRNAs, adequate miRNA delivery system to the
PCa tumors is required. However, the development of efficient in vivo
miRNA delivery system has been challenging because of rapid
degradation and excretion in serum condition and the lack of delivery
system trapping miRNAs into the cancer cells.”” A recent study has
reported efficient miRNA delivery techniques using PCa-targeted
nanoparticles (R11-SSPEI).”® They showed R11-SSPEI/miR-145 pep-
tide inhibits intraperitoneal inoculated PC3 tumor growth in vivo.
miR-16-conjugated atelocollagen has been shown to inhibit bone-
metastatic human prostate xenograft growth in the mouse bone site
in vivo.2% Liposomal miR-34 mimic (MRX34, Mirna Therapeutics Inc.)
is under phase I clinical trial for liver cancer, lung cancer, malignant
lymphoma, melanoma, multiple myeloma and renal cell carcinoma.”®
miR-34 functions as tumor suppressor in PCa; thus, this miR-34
delivery system will hopefully be useful for PCa in future. The
optimization of the stability of miRNAs and improvement in delivery
system of miRNAs are challenges for the future treatment of PCa.

CONCLUSION

Accumulating evidence on the roles of miRNAs and the interactions
between miRNAs and their target genes would promote a better
understanding of PCa oncogenesis and castration resistance. Further-
more, determining roles of miRNAs that could be used as new
diagnostic or predictive biomarkers would enable individualized
therapeutic management for PCa patients. Elucidation of molecular
mechanisms of PCa by miRNAs would help improve the therapeutic
strategy of PCa.
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