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Aberrantly expressed microRNAs in bladder cancer

and renal cell carcinoma

Akira Kurozumi?, Yusuke Goto2, Atsushi Okato!2, Tomohiko Ichikawa? and Naohiko Seki!

Bladder cancer (BC) and renal cell carcinoma (RCC) are frequently diagnosed urinary tract cancers. Recently developed
molecular-targeted therapies for RCC have shown remarkable therapeutic efficacy; however, no targeted therapeutics are
currently approved for the treatment of BC, and few effective treatment options exist. Current studies have shown that small
noncoding RNA molecules have major roles in cancer cells. MicroRNAs (miRNAs) are endogenous small noncoding RNA
molecules that regulate protein-/nonprotein-coding RNAs in human cells. A large body of evidence suggests that aberrantly
expressed miRNAs are deeply involved in the pathogenesis of human cancers. In this paper, we review recently published
miRNA expression signatures of BC and RCC. We focus on downregulated or upregulated miRNAs in multiple signatures and
discuss putative target genes of miRNAs. Comparisons of RCC and BC expression signatures revealed that the two types of
cancer showed opposite expression patterns for miR-200 family miRNAs (i.e., miR-141/200c and miR-200a/200b/429). We
discuss in silico analysis of genes targeted by miR-200 family miRNAs and the molecular mechanisms underlying BC and RCC.
Journal of Human Genetics (2017) 62, 49-56; doi:10.1038/jhg.2016.84; published online 30 June 2016

INTRODUCTION

Bladder cancer (BC) and renal cell carcinoma (RCC) are frequently
diagnosed urinary tract cancers, and ~ 429 000 and 338 000 new cases,
respectively, were diagnosed worldwide in 2012." Recently developed
molecular-targeted therapies for RCC have shown remarkable ther-
apeutic efficacy; however, no targeted therapeutics are currently
approved for the treatment of BC. Consequently, the survival rate
for invasive BC has not improved in the past decade.

BC is the eighth leading cause of death in men in the United States
of America, accounting for an estimated 4% of deaths in men in
2016.2 For non-muscle-invasive BC, transurethral surgical resection
and intravesical installation of immunotherapeutic agents such as
bacillus Calmette-Guerin or chemotherapeutic agents such as mito-
mycin C are the primary suggested treatments; however, the recur-
rence rate is high for this type of BC. Moreover, the prognosis of
patients with muscle-invasive BC is poor, with a 5-year survival rate of
<50%. Specifically, metastatic BC is difficult to treat, with a median
survival of ~8 months without treatment and 14 months with
treatment.> Despite the high prevalence and mortality rates of BC,
its molecular mechanisms are poorly understood and the primary
approach to treat metastatic BC remains cisplatin-based conventional
chemotherapy.

RCC accounts for over 80% of kidney cancers. Kidney cancer is the
seventh leading cause of newly diagnosed cancer in the United States
of America. The incidence of RCC is increasing because of recent
improvements in screening methods; that is, ultrasound and com-
puted tomography. In localized RCC, surgery is the standard curative

treatment. Although recent molecular-targeted agents have improved
prognoses in patients with advanced RCC, the 5-year survival rate is
still low (12.3%) because of recurrence or distant metastasis.* There-
fore, understanding the molecular mechanisms underlying BC and
RCC using current genomic technologies is urgently needed.
MicroRNAs (miRNAs) are a class of small (19-22 nucleotides)
noncoding RNA molecules that regulate protein-coding/noncoding
RNA expression in a sequence-dependent manner.>® A large body of
evidence has suggested that miRNAs are aberrantly expressed in many
human cancers and are deeply involved in cancer pathogenesis.””
Some highly expressed miRNAs in cancer tissues may function as
oncogenes by repressing tumor suppressors; conversely, miRNAs
expressed at low levels in cancer tissues may function as tumor
suppressors by negatively regulating oncogenes.”!0 Aberrant expres-
sion of miRNAs may be caused by disruption of the RNA network in
cancer cells.”>!0 Therefore, identification of aberrantly expressed
miRNAs in cancer cells may provide important insights into novel
RNA networks in cancer cells. In this review, we summarize aberrantly
expressed miRNAs based on current BC and RCC miRNA
signatures.!'*> We discuss the dysregulated expression of the
miR-200 family and miR-200 family target genes in BC and RCC.

miRNA expression signatures in BC

We reviewed seven recently published miRNA expression signatures
comparing BC and normal bladder epithelium (Table 1).!'17 The
analysis platforms varied between studies. Two recent signatures were
constructed from deep sequencing, and the other five signatures were
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Table 2 Frequently down-or upregulated miRNAs in BC

miRNAs in BC and RCC
A Kurozumi et al

No. of studies Hsa-mature sequence Stem-loop sequence Locus Clustered miRNAs (within 10 kbp)
Downregulated miRNAs
6 Hsa-miR-125b Hsa-miR-125b-1 11g24.1 —
Hsa-miR-125b-2 21g21.1 —
6 Hsa-miR-143-3p Hsa-miR-143 5q32 Hsa-miR-145
5 Hsa-miR-145-5p Hsa-miR-145 5q32 Hsa-miR-143
4 Hsa-miR-145-3p Hsa-miR-145 5q32 Hsa-miR-143
4 Hsa-miR-195-5p Hsa-miR-195 17p13.1 Hsa-miR-497
4 Hsa-let-7¢c-5p Hsa-let-7¢ 21g21.1 Hsa-miR-99a
3 Hsa-miR-23b-3p Hsa-miR-23b 9g22.32 Hsa-miR-27b/hsa-miR-3074/hsa-miR-24-1
3 Hsa-miR-100-5p Hsa-miR-100 11g24.1 Hsa-let-7a-2
3 Hsa-miR-490-5p Hsa-miR-490 7q33 —
Upregulated miRNAs
4 Hsa-miR-20a-5p Hsa-miR-20a 13g31.3 Hsa-miR-17/hsa-miR-18a/hsa-miR-19a/hsa-miR-19b-1/
hsa-miR-92a-1
3 Hsa-miR-141-3p Hsa-miR-141 12p13.31 Hsa-miR-200c
3 Hsa-miR-200a-3p Hsa-miR-200a 1p36.33 Hsa-miR-200b/hsa-miR-429
3 Hsa-miR-210-3p Hsa-miR-210 11pl15.5 —

Abbreviations: BC, bladder cancer; miRNA, microRNA.

constructed from microarray-based analyses. Array-based technologies
rapidly identify differentially expressed miRNAs. However, detected
miRNAs depend on the number of the probes mounted on the array.
Recent development of deep-sequencing technologies proved the novel
miRNAs and minor miRNAs such as passenger strands. Several studies
demonstrated that passenger strands of miRNAs acted as tumor-
suppressive miRNAs in several cancers.>»?> In this review, to clearly
summarize these miRNA signatures, we focused on commonly
downregulated miRNAs or upregulated miRNAs regardless of the
platforms and backgrounds of clinical tissues. We sorted these
miRNAs by the number of studies because we assumed that miRNAs
found in more signatures may have important roles in BC (Table 2).

Downregulated miRNAs in multiple BC signatures
Six of seven signatures showed downregulation of miR-125b and
miR-143-3p in BC clinical tissues. Multiple articles described the
tumor-suppressive role of miR-125b in BC, showing that this miRNA
targeted oncogenes such as E2F3, SphKl, SIRT7, MALATI and
MMPI3.2%° miR-125b functions as a tumor suppressor in ovarian
cancer, breast cancer, osteosarcoma and bladder cancer.20-32 However,
in prostate cancer, glioma and leukemia, miR-125b functions as an
oncogene by targeting tumor suppressors.>3=>

miR-143-3p, miR-145-5p and miR-145-3p are clustered on chromo-
some 5932, and multiple signatures have shown that these miRNAs
are downregulated in BC. Putative oncogenes regulated by miR-143 or
miR-145 in BC include ERKS5, Akt, FSCNI, IGFIR, PAKI and
PAI-13%40 Interestingly, miRNAs in this cluster function as tumor
suppressors in a variety of cancers, including BC, and few reports
have described oncogenic roles of miR-143 or miR-145.4-%> Thus,
members of the miR-143/145 cluster commonly function as tumor
suppressors, independent of the cancer type.

Upregulated miRNAs in multiple BC signatures

miR-20a-5p was the most frequently upregulated miRNA in BC
(Table 2). miR-20a has an oncogenic function in colorectal cancer
and gallbladder carcinoma,***> but a tumor-suppressive function in
hepatocellular carcinoma, oral squamous cell carcinoma and pancreatic
carcinoma.**8 miR-20a is clustered with miR-17/18a/19a/19b-1/92a-1

on chromosome 13q31.3; this cluster is known as the miR-17-92
cluster. Several reports have demonstrated the oncogenic function of
this cluster in various types of cancers.*9-5! Furthermore, miR-18a,
miR-19a and miR-19b have also been shown to be upregulated in
multiple BC profiles (Table 1). Additionally, upregulation of miR-19a
in tissues and plasma samples from patients with BC has been
reported, and this miRNA has been shown to act as an oncogene by
targeting PTEN, which may have a significant role in human BC.>>%3

miRNA expression signatures of RCC

We also reviewed six recently published miRNA expression signatures
comparing RCC and normal kidney tissue using clinical specimens
(Table 3).'%-23 Two signatures were constructed from deep sequencing
and the other four signatures were constructed from microarrays.
Commonly downregulated miRNAs or upregulated miRNAs in multi-
ple signatures are listed in Table 4, sorted according to the number of
signatures.

Downregulated miRNAs in multiple RCC signatures

According to miRNA expression signatures in RCC, five of six
signatures showed downregulation of miR-141 and miR-200c in
RCC tissues compared with normal tissues (Table 4). miR-141 and
miR-200c are clustered within 10 kbp. Recent studies have shown that
these miRNAs are downregulated in several cancers, including RCC,
and regulate the epithelial-to-mesenchymal transition (EMT) by
targeting E-cadherin transcriptional repressors, such as zinc-finger
E-box-binding homeobox 1 and 2 (ZEBI and ZEB2).>*® Further-
more, miR-429, the third most frequently downregulated miRNA in
RCC, forms a cluster with miR-200a/200b, and miR-141/200c and
miR-200a/200b/429 are members of the miR-200 family.>> The
miR-200 family has been reported to be associated with the EMT,
either inhibiting or inducing the EMT depending on the cancer
type.>>*° In RCC, many reports have indicated that miRNAs in this
family have tumor-suppressive roles and inhibit the EMT.>>0 Nakada
et al® reported that miR-141 and miR-200c are downregulated in
clear-cell RCC and that these miRNAs may be involved in suppression
of CDH1/E-cadherin transcription by upregulation of ZFHX1B. These
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Table 4 Frequently down-or upregulated miRNAs in RCC

miRNAs in BC and RCC
A Kurozumi et al

No. of studies Hsa-mature sequence Stem-loop sequence Locus Clustered miRNAs (within 10 kbp)
Downregulated miRNAs

5 Hsa-miR-141-3p Hsa-miR-141 12p13.31 Hsa-miR-200c

5 Hsa-miR-200c-3p Hsa-miR-200c 12p13.31 Hsa-miR-141

4 Hsa-miR-429 Hsa-miR-429 1p36.33 Hsa-miR-200b/hsa-miR-200a

4 Hsa-miR-363-3p Hsa-miR-363 Xq26.2 Hsa-miR-106a/hsa-miR-18b/hsa-miR-20b/hsa-miR-19b-2/

hsa-miR-92a-2
3 Hsa-miR-200b-3p Hsa-miR-200b 1p36.33 Hsa-miR-200a/hsa-miR-429
3 Hsa-miR-362-3p Hsa-miR-362 Xpll.23 Hsa-miR-532/hsa-miR-188/hsa-miR-500a/hsa-miR-501/
hsa-miR-500b/hsa-miR-660/hsa-miR-502
3 Hsa-miR-532-5p Hsa-miR-532 Xpl1.23 Hsa-miR-188/hsa-miR-500a/has-miR-362/hsa-miR-501/
hsa-miR-500b

3 Hsa-miR-508-3p Hsa-miR-508 Xq27.3 Hsa-miR-507/hsa-miR-506

3 Hsa-miR-10a-5p Hsa-miR-10a 17q21.32 —

3 Hsa-miR-187-3p Hsa-miR-187 18ql2.2 —

3 Hsa-miR-204-5p Hsa-miR-204 9g21.12 —

3 Hsa-miR-335-5p Hsa-miR-335 7q32.2 —
Upregulated miRNAs

4 Hsa-miR-155-5p Hsa-miR-155 21g21.3 —

4 Hsa-miR-210-3p Hsa-miR-210 11p15.5 —

4 Hsa-miR-224-5p Hsa-miR-224 Xq28 Hsa-miR-452

3 Hsa-miR-21-5p Hsa-miR-21 17q23.1 —

Abbreviations: miRNA, microRNA; RCC, renal cell carcinoma.

findings suggest the importance of the EMT-related miR-200 family in
RCC oncogenesis and metastasis.

Upregulated miRNAs in multiple RCC signatures
Four of six signatures have shown upregulation of miR-155, miR-210
and miR-224 in RCC (Table 4).

Gao et al.%! reported that miR-155 contributes to the proliferation
and invasion of clear-cell RCC by directly targeting E2F2, which has
crucial roles in the regulation of cell proliferation. Upregulation of
miR-155 has also been found in several other types of cancer, such as
colorectal cancer, breast cancer and lymphoma.6>-64

miR-210 has been reported to function as an oncogene and have
applications as a potential serum biomarker in RCC. Interestingly,
miR-210 has been reported to be a hypoxia-inducible miRNA. Given
the key roles of the VHL-HIF pathway in RCC, the upregulation of
miR-210 may be one of the central mechanisms of RCC oncogenesis.
miR-210 is also frequently upregulated in other cancer tissues and has
been shown to have an oncogenic function in other human cancers,
including BC (Table 2).6571

miR-224 has an oncogenic function in colorectal cancer, lung
cancer, esophageal squamous cell carcinoma and RCC,’>7¢ but a
tumor-suppressive function in prostate cancer.”’ Cheng et al”®
reported that miR-224 was upregulated in clear-cell RCC and directly
targeted type 1 iodothyronine deiodinase.”

COMPARISON OF MIRNA EXPRESSION SIGNATURES IN BC
AND RCC

Careful analysis of Tables 2 and 4 showed that some members of the
miR-200 family (miR-141/200c and miR-200a/200b/429) are frequently
upregulated in BC, but are frequently downregulated in RCC. This
phenomenon indicates that these miRNAs have opposing roles in
RCC and BC. Furthermore, these miRNAs may target tumor
suppressors in BC and oncogenes in RCC.

The members of the miR-200 family are clustered on two different
chromosomal regions: miR-141 and miR-200c are on chromosome
12p13.31, whereas miR-200a, miR-200b and miR-429 are on chromo-
some 1p36.33. Additionally, members of the miR-200 family are
classified into two groups (miR-141/200a and miR-200b/c/429)
according to their seed sequence.

In cancer, the promoter region of the miR-141/200c cluster is
hypermethylated, and the miR-200a/200b/429 cluster is silenced
through polycomb group-mediated histone modifications.”® 80 Recent
studies indicated that several types of transcription factors bound to
the promoter region of miR-200 family and these transcription factors
regulated the transcription of the miR-200 family positively or
negatively. Among them, Kriippel-like factor 5 positively regulates
the transcription of the miR-200 falmily.81 In contrast, ZEB1, ZEB2 and
B lymphoma Mo-MLYV insertion region 1 homolog negatively regulate
the transcription of miR-200 family.8>83 To investigate the expression
levels of these transcriptional factors, we used gene expression
omnibus (GEO) database. According to these database, Kriippel-like
factor 5 was downregulated in RCC compared with normal kidney
tissue (GEO accession nos. GSE22541 and GSE36895). Furthermore,
ZEBI, ZEB2 and B lymphoma Mo-MLYV insertion region 1 homolog
were downregulated in BC tissue compared with normal bladder
epithelium (GEO accession nos. GSE11783 and GSE31684). Aberrant
expression of transcription factors may have an influence on the
expression status of the miR-200 family in BC and RCC.

Next, we analyzed putative target genes for miR-200 family in these
two cancers. We performed genome-wide gene expression analysis and
in silico analysis. First, we screened putative target genes of the miR-200
family using TargetScan Release 7.0 (Whitehead Institute for Biomedical
Research, Cambridge, MA, USA). Next, we analyzed a publicly available
gene expression data set in the GEO database of BC and RCC (accession
number: GSE36895, GSE22541, GSE11783 and GSE31684). To select
putative genes that function as tumor suppressors in BC and oncogenes
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Table 5 Putative target genes of the miR-200 family in RCC and BC

No. of con- No. of con- RCC GEO
served target  No. of poorly con-  served target  No. of poorly con- (GSE36895, BC GEO (GSE11783,
Target sites of miR-  served target sites  sites of miR-  served target sites GSEZ22541) average  GSE31684) average
gene Gene name -200bc/429  of miR-200bc/429  -200a/141 of miR-200a/141  fold-change > 1 (a) fold-change < -1 (b) (a)-(b)
TRPA1 Transient receptor 0 1 0 1 2.078 -3.402 5.480
potential cation channel,
subfamily A, member 1
RGS5 Regulator of G-protein sig- 0 2 0 1 2.239 -2.400 4.639
naling 5
BHLHE41  Basic helix-loop—helix 1 0 0 1 3.242 -1.105 4.347
family, member e41
TLR3 Toll-like receptor 3 0 2 0 1 2.049 -2.097 4.146
GPR20 G-protein-coupled 0 1 0 1 1.676 -1.935 3.612
receptor 20
MEF2C Mpyocyte enhancer factor 0 1 0 1 1.429 -2.071 3.500
2c
MAP1B Microtubule-associated 2 0 0 1 1.483 -1.707 3.190
protein 1B
CCDC85A Coiled-coil domain 0 1 0 2 1.223 -1.683 2.905
containing 85A
RGS18 Regulator of G-protein sig- 0 2 0 3 1.553 -1.349 2.901
naling 18
HLA- Major histocompatibility 0 1 0 1 1.294 -1.538 2.831
DPA1 complex, class Il, DP o1
TCF4 Transcription factor 4 2 0 2 1 1.474 -1.323 2.797
CELF2 CUGBP, Elav-like family 1 1 0 1 1.002 -1.791 2.794
member 2
NR3C1 Nuclear receptor 1 1 1 0 1.078 -1.660 2.738
subfamily 3, group C,
member 1 (glucocorticoid
receptor)
PREX2 Phosphatidylinositol- 0 1 0 1 1.146 -1.586 2.732
3,4, 5-trisphosphate-
dependent Rac exchange
factor 2
SLFN5 Schiafen family member 5 0 1 0 1 1.379 -1.112 2.491
ITGA4 Integrin, o4 (antigen 0 1 0 1 1.224 -1.048 2.272
CD49D, a4 subunit of
VLA-4 receptor)
GNG2 Guanine nucleotide- 0 1 0 1 1.019 -1.029 2.048

binding protein
(G protein), y2

Abbreviations: BC, bladder cancer; GEO, gene expression omnibus; GSE, GEO data series; miR, miRNA; RCC, renal cell carcinoma.

in RCC, we screened downregulated genes in BC compared with
normal bladder epithelium (average log FC < —1) and upregulated
genes in RCC compared with normal kidney tissue (average log FC
>1). We merged these data sets, and 17 putative genes were identified
(Table 5). These genes were sorted by the difference between expression
in RCC and BC. TRPA1 was upregulated in RCC and downregulated in
BC and has putative target sites for members of the miR-200 family.
Therefore, we speculated that TRPAI may be critical in RCC and BC
oncogenesis based on this search of miR-200 family-regulated genes.
TRPAI is a member of the transient receptor potential (TRP) cation
channel subfamily. Although transient receptor potential channels
function as key regulators of oncogenesis and metastasis, their
oncogenic and tumor-suppressive roles are not consistent among
different types of cancers.®* As shown in Table 5, TRPAI may function
as an oncogene in RCC but a tumor suppressor in BC. Furthermore,
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Veldhuis et al. reported that transient receptor potential and G-pro-
tein-coupled receptors function independently and synergistically to
excite sensory nerves.3> G-protein-coupled receptors are seven-
transmembrane-spanning receptors that modulate several biological
functions, including cancer progression.®8” Several G-protein-related
genes (RGS5, GPR, RGSI8 and GNG2) have been shown to be
upregulated in RCC and downregulated in BC (Table 5). Therefore,
we hypothesize that G-protein-coupled receptor-transient receptor
potential channel interactions may be key regulators of downstream
signaling (oncogenic or tumor-suppressive pathways) in these two
types of urinary tract cancers.

CONCLUSIONS
A growing body of evidence has shown that various aberrantly
expressed miRNAs contribute to BC and RCC pathogenesis. The



discovery of noncoding RNA in the human genome has provided
evidence of the complexity of the RNA network in normal and cancer
cells. For further elucidation of novel RNA networks in cancer cells,
miRNA information will need to be organized based on expression
signatures. The present review highlighted recent findings of the
aberrant expression of miRNAs in BC and RCC cells. The discovery of
miRNA-regulated RNA networks in cancer cells has provided new
opportunities for strategies in cancer diagnosis and treatment.
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