Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Bioentrepreneur
  • Published:

Biocon's target factory

South Korea's 8-year effort to create an integrated platform for novel target and lead development provides an academic drug discovery model for other emerging economies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biocon in the context of other Korea's national programs to facilitate drug discovery.
Figure 2: Selection process for the Global Frontier Project and Biocon.
Figure 3: The promise of ARSs as therapeutic targets.
Figure 4: Biocon's team structure is functionally divided between core and external specialist groups.
Figure 5: Biocon's six key criteria for target validation.
Figure 6: Representative discoveries in the core target biology (focusing on ARS biology) and innovative technologies applicable to the processes of drug discovery are shown.
Figure 7: Biocon's therapeutic, diagnostic and technological pipelines.

References

  1. Organisation for Economic Co-operation and Development. OECD Education at a Glance 2014 (OECD Publishing, 2014).

  2. Shin, S.M. et al. Nat. Commun. 8, 15090 (2017).

    Article  Google Scholar 

  3. Park, M.C. et al. Cancer Res. 76, 1044–1054 (2016).

    Article  CAS  Google Scholar 

  4. Choe, K. et al. J. Clin. Invest. 125, 4042–4052 (2015).

    Article  Google Scholar 

  5. Lee, J. et al. Nano Lett. 15, 2938–2944 (2015).

    Article  CAS  Google Scholar 

  6. Yang, A. et al. Science 354, 623–626 (2016).

    Article  CAS  Google Scholar 

  7. Fang, P. et al. Nat. Commun. 6, 6402 (2015).

    Article  CAS  Google Scholar 

  8. Zhou, H., Sun, L., Yang, X.L. & Schimmel, P. Nature 494, 121–124 (2013).

    Article  CAS  Google Scholar 

  9. Son, J. et al. Acta Crystallogr. D Biol. Crystallogr. 69, 2136–2145 (2013).

    Article  CAS  Google Scholar 

  10. Schimmel, P., Tao, J. & Hill, J. FASEB J. 12, 1599–1609 (1998).

    Article  CAS  Google Scholar 

  11. Rock, F.L. et al. Science 316, 1759–1761 (2007).

    Article  CAS  Google Scholar 

  12. Novoa, E.M. et al. Proc. Natl. Acad. Sci. USA 111, E5508–E5517 (2014).

    Article  CAS  Google Scholar 

  13. Park, J.S. et al. Circulation 136, A24036 (2017).

    Google Scholar 

  14. Park, M.C. et al. Proc. Natl. Acad. Sci. USA 109, E640–E647 (2012).

    Article  CAS  Google Scholar 

  15. Ahn, Y.H. et al. Nat. Microbiol. 2, 16191 (2016).

    Article  CAS  Google Scholar 

  16. Kim, S.B. et al. J. Cell Biol. 216, 2201–2216 (2017).

    Article  CAS  Google Scholar 

  17. Ko, Y.G. et al. J. Biol. Chem. 276, 6030–6036 (2001).

    Article  CAS  Google Scholar 

  18. Han, J.M. et al. Cell 149, 410–424 (2012).

    Article  CAS  Google Scholar 

  19. Kim, D.G. et al. FASEB J. 26, 4142–4159 (2012).

    Article  CAS  Google Scholar 

  20. Kwon, N.H. et al. ACS Pharmacol. Transl. Sci. https://doi.org/10.1021/acsptsci.8b00001 (2018).

    Article  CAS  Google Scholar 

  21. Kim, S., You, S. & Hwang, D. Nat. Rev. Cancer 11, 708–718 (2011).

    Article  CAS  Google Scholar 

  22. Choi, J.W. et al. PLoS Genet. 7, e1001351 (2011).

    Article  CAS  Google Scholar 

  23. Choi, J.W. et al. J. Mol. Cell Biol. 4, 164–173 (2012).

    Article  Google Scholar 

  24. Lee, H.S. et al. Biochem. J. 454, 411–416 (2013).

    Article  CAS  Google Scholar 

  25. Park, S.G., Ewalt, K.L. & Kim, S. Trends Biochem. Sci. 30, 569–574 (2005).

    Article  CAS  Google Scholar 

  26. Kang, T. et al. J. Mol. Biol. 423, 475–481 (2012).

    Article  CAS  Google Scholar 

  27. Kim, J.H. et al. Nat. Commun. 8, 732 (2017).

    Article  Google Scholar 

  28. Kim, D.G. et al. Nat. Chem. Biol. 10, 29–34 (2014).

    Article  CAS  Google Scholar 

  29. Jeong, S.J. et al. Exp. Mol. Med. 50, e424 (2018).

    Article  CAS  Google Scholar 

  30. Lee, E.Y. et al. Nat. Immunol. 17, 1252–1262 (2016).

    Article  CAS  Google Scholar 

  31. Kim, J. et al. Nat. Mater. 10, 747–752 (2011).

    Article  CAS  Google Scholar 

  32. Park, J., Oh, S. & Park, S.B. Angew. Chem. Int. Ed. Engl. 51, 5447–5451 (2012).

    Article  CAS  Google Scholar 

  33. Han, S. et al. Adv. Mater. 24, 5924–5929 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Global Frontier Project grant (NRF-M3A6A4-2010-0029785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neenan, T., Burrier, R. & Kim, S. Biocon's target factory. Nat Biotechnol 36, 791–797 (2018). https://doi.org/10.1038/nbt.4242

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.4242

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research