Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of cellular metabolism on chromatin dynamics and epigenetics

Abstract

The substrates used to modify nucleic acids and chromatin are affected by nutrient availability and the activity of metabolic pathways. Thus, cellular metabolism constitutes a fundamental component of chromatin status and thereby of genome regulation. Here we describe the biochemical and genetic principles of how metabolism can influence chromatin biology and epigenetics, discuss the functional roles of this interplay in developmental and cancer biology, and present future directions in this rapidly emerging area.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biochemical basis of metabolite interaction with chromatin and metabolic pathways that contribute.
Figure 2: Metabolic reprograming and Waddington's epigenomic landscape.
Figure 3: Analogy of cancer-associated mutations found in growth signalling with those in metabolism-dependent chromatin-modifying processes.

Similar content being viewed by others

References

  1. Chandel, N. S. Navigating Metabolism (Cold Spring Harbor Laboratory Press, 2015).

    Google Scholar 

  2. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Chandel, N. S., Jasper, H., Ho, T. T. & Passegue, E. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat. Cell Biol. 18, 823–832 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, J., Ocampo, A. & Izpisua Belmonte, J. C. Cellular metabolism and induced pluripotency. Cell 166, 1371–1385 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Dai, Z. & Locasale, J. W. Understanding metabolism with flux analysis: from theory to application. Metab. Eng. 43, 94–102 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Piunti, A. & Shilatifard, A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352, aad9780 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj2239 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benayoun, B. A. et al. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158, 673–688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, K. et al. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat. Genet. 47, 1149–1157 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Coleman, R. T. & Struhl, G. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 356, eaai8236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dorighi, K. M. et al. MLL3 and MLL4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Mol. Cell 66, 568–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Feinberg, A. P. & Fallin, M. D. Epigenetics at the crossroads of genes and the environment. JAMA 314, 1129–1130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaelin, W. G. Jr. & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pradeepa, M. M. et al. Histone H3 globular domain acetylation identifies a new class of enhancers. Nat. Genet. 48, 681–686 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie, Z. et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell 62, 194–206 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Plongthongkum, N., Diep, D. H. & Zhang, K. Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nat. Rev. Genet. 15, 647–661 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Rothbart, S. B. & Strahl, B. D. Interpreting the language of histone and DNA modifications. Biochim. Biophys. Acta 1839, 627–643 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wagner, G. R. & Hirschey, M. D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol. Cell 54, 5–16 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Locasale, J. W. & Cantley, L. C. Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 14, 443–451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mentch, S. J. & Locasale, J. W. One-carbon metabolism and epigenetics: understanding the specificity. Ann. NY Acad. Sci. 1363, 91–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Etchegaray, J. P. & Mostoslavsky, R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol. Cell 62, 695–711 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, Z., Cai, L. & Tu, B. P. Dietary control of chromatin. Curr. Opin. Cell Biol. 34, 69–74 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18, 90–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Whetstine, J. R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, X. & Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wellen, K. E. & Thompson, C. B. A two-way street: reciprocal regulation of metabolism and signalling. Nat. Rev. Mol. Cell Biol. 13, 270–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Ryall, J. G., Cliff, T., Dalton, S. & Sartorelli, V. Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell 17, 651–662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kinnaird, A., Zhao, S., Wellen, K. E. & Michelakis, E. D. Metabolic control of epigenetics in cancer. Nat. Rev. Cancer 16, 694–707 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Minor, E. A., Court, B. L., Young, J. I. & Wang, G. Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine. J. Biol. Chem. 288, 13669–13674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blaschke, K. et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500, 222–226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Agathocleous, M. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549, 476–481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ost, A. et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159, 1352–1364 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl Acad. Sci. USA 111, 1873–1878 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Radford, E. J. et al. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Romano, K. A. et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host Microbe 22, 279–290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klosin, A., Casas, E., Hidalgo-Carcedo, C., Vavouri, T. & Lehner, B. Transgenerational transmission of environmental information in C. elegans. Science 356, 320–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Hardikar, A. A. et al. Multigenerational undernutrition increases susceptibility to obesity and diabetes that is not reversed after dietary recuperation. Cell Metab. 22, 312–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Dias, B. G. & Ressler, K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Han, S. et al. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 544, 185–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  59. Matoba, S. et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884–895 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hormanseder, E. et al. H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell 21, 135–143 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Waddington, C. H. The Strategy of the Genes; A Discussion of Some Aspects of Theoretical Biology (Allen & Unwin, 1957).

    Google Scholar 

  62. Waddington, C. H. Canalization of development and genetic assimilation of acquired characters. Nature 183, 1654–1655 (1959).

    Article  CAS  PubMed  Google Scholar 

  63. Feinberg, A. P. Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Pujadas, E. & Feinberg, A. P. Regulated noise in the epigenetic landscape of development and disease. Cell 148, 1123–1131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ladewig, J., Koch, P. & Brustle, O. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat. Rev. Mol. Cell Biol. 14, 225–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Feinberg, A. P., Koldobskiy, M. A. & Gondor, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17, 284–299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moris, N., Pina, C. & Arias, A. M. Transition states and cell fate decisions in epigenetic landscapes. Nat. Rev. Genet. 17, 693–703 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Rajagopal, J. & Stanger, B. Z. Plasticity in the adult: how should the Waddington diagram be applied to regenerating tissues? Dev. Cell 36, 133–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moussaieff, A. et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21, 392–402 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Gu, W. et al. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell 19, 476–490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, J. et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325, 435–439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shiraki, N. et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780–794 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Ito, K. & Suda, T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sperber, H. et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat. Cell Biol. 17, 1523–1535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anso, E. et al. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat. Cell Biol. 19, 614–625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cluntun, A. A. et al. The rate of glycolysis quantitatively mediates specific histone acetylation sites. Cancer Metab. 3, 10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cai, L., Sutter, B. M., Li, B. & Tu, B. P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426–437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, J. V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306–319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mews, P. et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546, 381–386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ryall, J. G. et al. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16, 171–183 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. TeSlaa, T. et al. α-Ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells. Cell Metab. 24, 485–493 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Flores, A. et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat. Cell Biol. 19, 1017–1026 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Schell, J. C. et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat. Cell Biol. 19, 1027–1036 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    Article  PubMed  Google Scholar 

  92. Phan, A. T., Goldrath, A. W. & Glass, C. K. Metabolic and epigenetic coordination of T cell and macrophage immunity. Immunity 46, 714–729 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chisolm, D. A. et al. CCCTC-binding factor translates interleukin 2- and α-ketoglutarate-sensitive metabolic changes in t cells into context-dependent gene programs. Immunity 47, 251–267 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ding, W. et al. S-Adenosylmethionine levels govern innate immunity through distinct methylation-dependent pathways. Cell Metab. 22, 633–645 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T Cell responses. Cell 162, 1217–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oginuma, M. et al. A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev. Cell 40, 342–353 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Agathocleous, M. et al. Metabolic differentiation in the embryonic retina. Nat. Cell Biol. 14, 859–864 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548–552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gao, X., Reid, M. A., Kong, M. & Locasale, J. W. Metabolic interactions with cancer epigenetics. Mol. Aspects Med. 54, 50–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiang, Y. et al. Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nat. Cell Biol. 17, 1158–1168 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sciacovelli, M. et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537, 544–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, T. et al. O-GlcNAcylation of fumarase maintains tumour growth under glucose deficiency. Nat. Cell Biol. 19, 833–843 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Mehrmohamadi, M., Mentch, L. K., Clark, A. G. & Locasale, J. W. Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism. Nat. Commun. 7, 13666 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kryukov, G. V. et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mavrakis, K. J. et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351, 1208–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Yuan, T. L. & Cantley, L. C. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497–5510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yen, K. et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov. 7, 478–493 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Pan, M. et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090–1101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kottakis, F. et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539, 390–395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. McDonald, O. G. et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet. 49, 367–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861–873 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Maddocks, O. D. K. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544, 372–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Taya, Y. et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354, 1152–1155 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Stricker, S. H., Koferle, A. & Beck, S. From profiles to function in epigenomics. Nat. Rev. Genet. 18, 51–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Balbach, S. T. & Orkin, S. H. An Achilles' heel for MLL-rearranged leukemias: writers and readers of H3 lysine 36 dimethylation. Cancer Discov. 6, 700–702 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Gilan, O. et al. Functional interdependence of BRD4 and DOT1L in MLL leukemia. Nat. Struct. Mol. Biol. 23, 673–681 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lu, C. et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352, 844–849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, X., Romero, I. L., Litchfield, L. M., Lengyel, E. & Locasale, J. W. Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers. Cell Metab. 24, 728–739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, X. & Locasale, J. W. Metabolomics: a primer. Trends Biochem. Sci. 42, 274–284 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dutta, D., Heo, I. & Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23, 393–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Bohm, J., Schlaeger, E. J. & Knippers, R. Acetylation of nucleosomal histones in vitro. Eur. J. Biochem. 112, 353–362 (1980).

    Article  CAS  PubMed  Google Scholar 

  135. Lau, O. D. et al. p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate. Kinetic analysis of the catalytic mechanism. J. Biol. Chem. 275, 21953–21959 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Wiktorowicz, J. E., Campos, K. L. & Bonner, J. Substrate and product inhibition initial rate kinetics of histone acetyltransferase. Biochemistry 20, 1464–1467 (1981).

    Article  CAS  PubMed  Google Scholar 

  137. Tuck, M. T., Farooqui, J. Z. & Paik, W. K. Two histone H1-specific protein-lysine N methyltransferases from Euglena gracilis. Purification and characterization. J. Biol. Chem. 260, 7114–7121 (1985).

    CAS  PubMed  Google Scholar 

  138. Rathert, P., Zhang, X., Freund, C., Cheng, X. & Jeltsch, A. Analysis of the substrate specificity of the Dim 5 histone lysine methyltransferase using peptide arrays. Chem. Biol. 15, 5–11 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lobet, Y., Lhoest, J. & Colson, C. Partial purification and characterization of the specific protein-lysine N methyltransferase of YL32, a yeast ribosomal protein. Biochim. Biophys. Acta 997, 224–231 (1989).

    Article  CAS  PubMed  Google Scholar 

  140. Oden, K. L. & Clarke, S. S adenosyl L-methionine synthetase from human erythrocytes: role in the regulation of cellular S adenosylmethionine levels. Biochemistry 22, 2978–2986 (1983).

    Article  CAS  PubMed  Google Scholar 

  141. Melnyk, S., Pogribna, M., Pogribny, I. P., Yi, P. & James, S. J. Measurement of plasma and intracellular S adenosylmethionine and S adenosylhomocysteine utilizing coulometric electrochemical detection: alterations with plasma homocysteine and pyridoxal 5′-phosphate concentrations. Clin. Chem. 46, 265–272 (2000).

    CAS  PubMed  Google Scholar 

  142. Kossykh, V. G., Schlagman, S. L. & Hattman, S. Phage T4 DNA [N]-adenine6methyltransferase. Overexpression, purification, and characterization. J. Biol. Chem. 270, 14389–14393 (1995).

    Article  CAS  PubMed  Google Scholar 

  143. del Gaudio, R. et al. Characterization of a new variant DNA (cytosine 5)-methyltransferase unable to methylate double stranded DNA isolated from the marine annelid worm Chaetopterus variopedatus. FEBS Lett. 460, 380–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Simon, D., Grunert, F., von Acken, U., Doring, H. P. & Kroger, H. DNA-methylase from regenerating rat liver: purification and characterisation. Nucleic Acids Res. 5, 2153–2167 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cohen, H. M., Griffiths, A. D., Tawfik, D. S. & Loakes, D. Determinants of cofactor binding to DNA methyltransferases: insights from a systematic series of structural variants of S adenosylhomocysteine. Org. Biomol. Chem. 3, 152–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Guan, X., Lin, P., Knoll, E. & Chakrabarti, R. Mechanism of inhibition of the human sirtuin enzyme SIRT3 by nicotinamide: computational and experimental studies. PLoS ONE 9, e107729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Borra, M. T., Langer, M. R., Slama, J. T. & Denu, J. M. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemistry 43, 9877–9887 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Yamada, K., Hara, N., Shibata, T., Osago, H. & Tsuchiya, M. The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. Anal. Biochem. 352, 282–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Belenky, P. et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129, 473–484 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cascella, B. & Mirica, L. M. Kinetic analysis of iron-dependent histone demethylases: α-ketoglutarate substrate inhibition and potential relevance to the regulation of histone demethylation in cancer cells. Biochemistry 51, 8699–8701 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Chowdhury, R. et al. The oncometabolite 2 hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rose, N. R. et al. Inhibitor scaffolds for 2 oxoglutarate dependent histone lysine demethylases. J. Med. Chem. 51, 7053–7056 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Pritchard, J. B. Intracellular α-ketoglutarate controls the efficacy of renal organic anion transport. J. Pharmacol. Exp. Ther. 274, 1278–1284 (1995).

    CAS  PubMed  Google Scholar 

  156. Chin, R. M. et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510, 397–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shen, J. et al. Oxygen consumption rates and oxygen concentration in Molt 4 cells and their mtDNA depleted (ρ0) mutants. Biophys. J. 84, 1291–1298 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Horton, J. R. et al. Structural basis for KDM5A histone lysine demethylase inhibition by diverse compounds. Cell Chem. Biol. 23, 769–781 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Laukka, T. et al. Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J. Biol. Chem. 291, 4256–4265 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Koivunen, P. et al. Transformation by the (R)-enantiomer of 2 hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those whose work could not be cited due to space constraints. We thank members of the Locasale lab and P. R. Tata for constructive comments on the manuscript. J.W.L. acknowledges support from R01CA193256 and P30CA014236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason W. Locasale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reid, M., Dai, Z. & Locasale, J. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19, 1298–1306 (2017). https://doi.org/10.1038/ncb3629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3629

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer