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The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the

development of the new research field of attosecond nanophysics. An essential prerequisite

for advancing this new area is the ability to characterize optical near fields from light

interaction with nanostructures, with sub-cycle resolution. Here we experimentally

demonstrate attosecond near-field retrieval for a tapered gold nanowire. By comparison of the

results to those obtained from noble gas experiments and trajectory simulations, the spectral

response of the nanotaper near field arising from laser excitation can be extracted.
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P
hotoemission from solids is one of the most fundamental
and long-studied electron phenomena in nature. Related
photon–electron interactions form the basis for modern

optoelectronics, where light can trigger electron transfer,
amplification and emission; vice versa, electron injection and
excitation can result in the emission of light1. The decrease
of the dimensions, and increase in speed of electronic
and optoelectronic circuitry is paramount for improving their
performance, with switching rates possibly approaching
optical frequencies in all-optical wide-bandgap devices2–4. This
motivates the development of femtosecond5–10 to attosecond11,12

metrology of nanolocalized fields and the control of
electron emission and acceleration in these fields13–16.
Attosecond resolution is a prerequisite in tracing, among
others, optical-field-induced formation and subsequent
relaxation of collective electron dynamics, transient changes in
the optoelectronic properties of nanostructured materials in
strong fields and screening after photoemission.

Attosecond nanoscale near-field sampling (ANNS), proposed
in 2007 (ref. 12) and extensively studied theoretically17–22, has
been shown to provide sub-cycle resolution of optical near-field
dynamics in nanostructured materials, but has not yet been
implemented experimentally. ANNS relies on the emission of
photoelectrons with high initial momentum by an attosecond
extreme ultraviolet (XUV) pulse, and subsequent acceleration of
the photoelectrons in the near fields. As a linear process, XUV
photoemission results in high-energy electrons being emitted
from the entire illuminated area that is typically not confined to a
nanoscale, but rather micron scale. Consequently, the detection
scheme averages on the micron scale making it challenging to
characterize near fields around nanostructured sample
geometries, typically varying substantially in phase and
amplitude on a nanometre scale17–20.

Here we perform ANNS measurements on a nanotaper at
near-infrared (NIR) intensities well below the onset of non-linear
effects. Using the gold nanotaper sample geometry, we show that
through careful analysis of field homogeneity and streaking
electron trajectories, a meaningful attosecond characterization of
near fields can be performed in spite of the inherent challenges
associated with the large emission area.

Results
Experimental approach. ANNS is based on attosecond streaking
spectroscopy23,24, where the XUV photoemitted electron is
accelerated by a few-cycle laser field with a variable time delay.
The change of the electron’s momentum can be described by the
classical equation of motion Dp¼� e

R1
t0
E r tð Þ; tð Þdt, where t0 is

the emission time, e the elementary charge, r the electron position
and E the electric field. In the ‘ponderomotive’ streaking regime,
the spatial variation of the electric field during electron
propagation in the laser pulse can be neglected, and the integral
can be evaluated to yield the vector potential A(t0) (Coulomb
gauge). The final electron energy Ekin is then given by

Ekin ¼
1

2me
p0 þDpð Þ2

� 1
2me

p20 � 2ep0 � A t0ð Þþ e2A2 t0ð Þ
� �

; ð1Þ

where p0 and me are the initial momentum and mass of the
electron. For the moderate field strengths used in attosecond
streaking, the last term can be neglected. The change of the
electron kinetic energy is thus directly related to the vector
potential in the direction of electron emission and accordingly
preserves full temporal information of the probed electrical fields.
For nanostructured samples, there can be several streaking

regimes17. The measurements presented here are in the
ponderomotive regime discussed above.

Figure 1a shows our experimental set-up for ANNS. The
experimental approaches are described in detail in the methods
section and supporting information (Supplementary Note 1;
Supplementary Fig. 1). In brief, phase-stabilized, 4.5 fs few-cycle
NIR pulses (720 nm central wavelength) are focused onto a gold
nanotaper. The laser field excites collective electron dynamics in
the nanotaper, resulting in spatially varying near fields.
Attosecond XUV pulses of 220 as duration and 95 eV central
photon energy (Supplementary Fig. 2) with adjustable delay
release electrons from the sample, which are subsequently
accelerated in the near fields. The momentum distribution of
the freed electrons is recorded as a function of delay between the
XUV pulse and the NIR field by a time-of-flight (TOF)
spectrometer. The spectrometer axis is aligned parallel to the
laser polarization and the nanotaper axis. Delay-dependent
variations of the momentum component parallel to the spectro-
meter axis are thereby measured. The taper can be replaced by a
gas target (Ne), allowing independent characterization of the
incident NIR field and the XUV pulse by means of standard
attosecond streaking24.

The nanotaper is formed by a gold nanowire with a 10�
opening angle (Supplementary Fig. 3; Supplementary Note 2; the
Method section). The XUV focal spot size is B5 mm, and is
centred on the end of the nanowire. Thus, the XUV probes a
2.5-mm length of the nanowire, with its diameter tapering from
B640 nm down to 200 nm. The surface area of the region of
enhanced fields at the end of the hemisphere (100-nm radius of
curvature) that terminates the tapered nanowire is only a small
fraction (B1–2% of the total surface area), and does not yield any
detectable signal above the noise level in our measurements
(Supplementary Note 7). Thus, only the near fields surrounding
the wire play a role in our measurements, and not those
surrounding the hemisphere.

Experimental results. Figure 2a shows a typical experimental
photoelectron spectrum obtained from the two-color interaction
with the nanotaper. The spectrum reveals two major contribu-
tions: a low-energy contribution o20 eV and a broader structure
between 50 and 93 eV, with its maximum B80 eV. Low-energy
electrons are mainly generated by strong-field NIR photoemission
from the sharp apex region of the nanotaper with a cutoff energy
of 15 eV consistent with the applied intensities of B1� 1011

Wcm� 2, as has been observed in related strong-field photo-
emission studies on nanotips with similar apex radii13,15,25.
Photoelectrons with an energy exceeding 50 eV are attributed to
XUV photoemission. We want to point out that spatial scanning
of the nanoscale target in the focal plane supports these two
different photoemission schemes. Figure 2b shows localization of
the strong-field NIR photoemission at the nanotaper apex due to
the strong nonlinearity of the process. This is a super-resolution
phenomenon, which we used for precise positioning of the
nanotaper in the laser focus. In contrast, the XUV photoemission
is a linear process, leading to the electron emission from the
whole illuminated surface. The map in Fig. 2c, thus represents the
convolution of the shape of the nanotaper with the shape of the
XUV beam profile.

Figure 3a shows a streaking spectrogram obtained from the Au
nanotaper. The panel to the right depicts the spectrum at a fixed
delay. The high-energy edge of the spectrum is assigned to the
photoemission of Au-5d electrons. Figure 3b shows the streaking
spectrogram obtained from Ne for the same pulse parameters.
Under the assumption that quantum effects can be neglected and
negligible delay for the absolute photoemission time from Ne
atoms26, the gas streaking gives access to the vector potential of
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the incident laser field27. The extracted streaking curves from
Fig. 3a,b are compared with Fig. 3c (Supplementary Note 3;
Supplementary Figs 4 and 5). A shift between the streaking traces
is directly discernible and is evaluated from this particular set of
measurements as Dt¼ (200±50) as.

Figure 4a shows the reconstructed electric fields from the
measurements on the nanotaper shown in Fig. 3b. Our
measurements not only allow a direct retrieval of the near field,
but also allow a reconstruction of the spectrally resolved response
function for the spectral range of the incident laser pulse at the
sample surface (Supplementary Note 4). This is particularly
useful, since in principle this allows the prediction of the near
field for any synthesized light field within the same spectral range.
Figure 4b,c shows the response function, calculated from
experimental data, in terms of the wavelength-resolved phase
shifts and relative amplitudes, respectively, between the local near
field and the incident laser field under varying experimental
conditions (different days, different tapers). The crosses represent
data points obtained by discrete Fourier transform of the
reconstructed electric fields of gas and nanotaper measurements.
Solid dots show the average response, retrieved by a linear
interpolation on the wavelength axis of the experimental data
points that were weighted by the respective electron count rate.
Error bars on the solid dots are calculated as the respective
standard deviation (s.d.). The average measured phase shift lies
between � 0.4 and � 0.8 rad.

Theoretical results. Figure 1b,c displays the near-field compo-
nent in the detection direction, calculated numerically using a
finite-difference time-domain (FDTD) approach. The near field
can be understood as a superposition of incident and scattered

fields, and displays a substantial variation of field strength over
length scales of 200 nm from the surface. Figure 1d shows the
response function for the nanotaper, yielding a phase shift of the
near fields with respect to the laser pulse. The phase shift, eval-
uated to 300 as, is roughly constant for l between 500 and
1,000 nm. This phase shift is characteristic to the specific
nanoscale dimensions of the sample, in comparison with the
500 as shift that would be expected from a macroscopic plain gold
sample (Supplementary Note 6). Calculations show that the
probed near-field component, normalized to the total field
strength, is suppressed at the surface of the nanotaper to B0.5
with respect to the incident laser field. The numerical simulations
of the nanotaper are compared with the analytically solvable Mie
calculations of an infinite cylinder with a diameter of 200 nm.

We performed trajectory calculations of the photoemitted
electrons in the near fields around the nanotaper. In line with
previous theoretical studies17–20,22, the photoemission process
has been assumed to be instantaneous. The retrieved streaking
curves from the simulated streaking trace (Supplementary Note 6;
Supplementary Fig. 6) from the tapered nanowire are shown in
Fig. 3d (symbols) together with a simulated gas phase streaking
curve (solid green line). The relation between the vector potential
of the simulated streaking field (dashed purple line) and streaking
trace (solid purple line) is shown as an inset to Fig. 3d and will be
explained in the discussion section below. The streaking curve
from the tapered nanowire exhibits a shift with respect to the
reference streaking curve calculated using the vector potential of
the incident laser (green line) of BDt¼ 300 as with a relative
amplitude of B0.4. We also calculated the theoretical spectrally
resolved response function. The spread of the theoretical values is
given by the s.d. of the response averaged over different emission
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Figure 1 | Attosecond nanoscale near-field sampling. (a) Experimental set-up: few-cycle near infrared (NIR) and isolated extreme ultraviolet (XUV)

attosecond pulses with variable delay are focused onto a gold nanotaper. High-energy electrons are emitted via XUV photoionization and subsequently

accelerated in the local near fields. The delay-dependent final kinetic energy is measured using a time-of-flight (TOF) spectrometer. The nanotaper can be

replaced by a gas target. (b,c) Maximal normalized local field strengths of the component parallel to the taper axis (b) along the laser propagation direction

and (c) perpendicular to it as obtained from FDTD simulations. The green arrow shows the maximum electron detection angle. The blue lineout illustrates

the XUV photoemission area. (d,e) Response function of the probed Ey-component (axis of laser polarization and TOF spectrometer) for a representative

point (as indicated in b) at the nanotaper, showing the (d) absolute value and (e) phase dependence on the wavelength. The response of the shank is close

to an infinite cylinder with a diameter of 200 nm calculated using Mie theory (black dashed line). Slight position-dependent oscillations occur due to a

plasmon launched at the tip apex (Supplementary Note 4 and 5).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11717 ARTICLE

NATURE COMMUNICATIONS | 7:11717 | DOI: 10.1038/ncomms11717 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


points, weighted by the XUV beam profile (see Supplementary
Note 6; Supplementary Figs 7–9; Methods for details).
The theoretical phase shift of the nanotaper streaking curve is
� 0.5 to � 1.1 rad.

Discussion
For our experimental parameters, the emission area on the
tapered nanowire is much larger than at the taper apex, such that
the streaking spectrogram is dominated by the contribution from
the tapered nanowire, while streaking signals from the taper apex
are not discernible. Increasing the XUV flux and improving the
focusing should allow to also decipher contributions from the
nanotaper apex (Supplementary Note 7; Supplementary Fig. 10).

We compared the theoretical streaking data obtained from the
spatially averaged simulations to theoretical streaking curves for
electrons emitted from specific positions on the tip. The curves
obtained for emission at specific positions from the nanotaper
(purple and light blue lines corresponding to positions 200 and
3,000 nm away from the apex of the nanotaper) are in excellent

agreement with the retrieved data from the full simulation.
Between these spatial points, the theoretical 300 as shift of the
nanotaper streaking curve with respect to the incident laser field
is in good agreement with the experimentally measured shift of
200±50 as. Comparing the experimental and theoretical spec-
trally resolved response functions, both the relative amplitudes
and the relative phase shifts are again in good agreement. These
results indicate that the experiments successfully probe the near
fields around the tapered nanowire part of the sample.

To rule out other possible mechanisms for the shift between
the gas phase and nanotaper streaking curves, we considered
photoemission time delays and the spatial dependence of the
fields around the nanotaper. While recent experimental studies
compare photoemission delays of macroscopic noble metal
surfaces with gaseous media for photoemission energies
o30 eV (ref. 28), no other experimental studies have been
reported, which compare delays between a nanostructured sample
and a noble gas. In general, the photoemission process is not
instantaneous, but electrons are released into the external
streaking fields with some effective absolute photoemission time
delay, depending also on the photoemission energy of the
electrons. Theoretical studies for neon29 suggest that the absolute
photoemission delay for energies exceeding 70 eV is o10 as. In
previous studies on plain macroscopic surfaces, the streaking field
polarization was approximately along the surface normal30. This
yields an additional delay, since the normal field component is
screened over very short depths (in the range 0–0.3 nm for Mg
(ref. 31)) at the surface, meaning that photoemitted electrons do
not experience the streaking field until they reach the
surface—which typically takes on the order of tens to hundreds
of attoseconds30,32–34. In our case, however, photoelectrons from
the nanotaper probe the electric field component parallel to the
surface. This component is continuous across the surface, and
approximately homogeneous over the electron emission depth as
the skin depth (B30 nm) is significantly larger than the emission
depth (B0.4 nm). Thus, delays due to the transport of the
electrons to the surface are largely absent for our experiments. At
the relatively high XUV energies employed in our experiments,
additional effects should play a minor role (Supplementary Note 8).
We therefore assume that the photoemission delay from the tapered
nanowire in the given geometry is negligible compared with the
measured time shift between the streaking spectrograms for the
nanotaper and gas. The shift is thus attributed to the difference in
the electric fields acting on the released electrons, which can be
related to the collective free-electron polarization response of the
gold nanowire.

Full temporal information about the nanoscale near fields
is only preserved in the streaking traces if the experiment is
performed in the ponderomotive streaking regime, which
is characterized by a spatially homogeneous field distribution.
To elucidate the streaking regime of the nanotaper near-field
sampling, we calculate the adiabaticity parameter d, defined
similar to strong-field photoemission experiments on localized,
enhanced near fields25 as the ratio of the time it takes an electron
to leave the near field to the period of the laser pulse. Three
different regimes are categorized: (i) doo1, defining the
‘instantaneous’ regime, where the near field is probed directly,
(ii) d441, which we refer to as the ‘ponderomotive’ regime, and
the intermediate regime (iii) characterized by dB1. For the
parameters of the experiment, electrons take at least 10 fs to leave
the near field, which is long compared with the optical period of
2.5 fs and the duration of the NIR few-cycle pulse of 5 fs. Thus,
the experiment is performed in the ponderomotive streaking
regime. For the given XUV photon energy, an electron propagates
B24 nm within the near fields during the NIR pulse duration of
5 fs, which is much smaller than the near-field variation length of
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Figure 2 | Position scan with photoelectron spectra from the Au

nanotaper. (a) Electron spectrum under combined illumination with XUV

and NIR light, measured using a time-of-flight spectrometer. For the

polycrystalline nanowire, the energy landscape under the Fermi edge results

from averaging over different crystal structures and orientations, and

eventually a contribution from surface contamination. (b) Integrated

electron emission maps from the low-energy region of a dominated by

strong-field NIR photoemission and (c) for the high-energy region of

a caused by linear XUV photoemission. The laser beam propagates in the z

direction. The NIR photoemission is strongly enhanced at the apex of the

nanotaper, where field enhancement at the apex supports non-linear NIR

photoemission processes. The XUV photoemission represents the

convolution of the taper geometry with the XUV beam in the focus. The

solid black line serves as a guide to the eye showing the outline of the

nanotaper, while the solid white line illustrates approximately the geometry

of the part of sample that is probed in the experiment. Calculations show

that relative amplitude and phase of the electrical field is approximately

homogenous over the probed surface region and accordingly averaging

preserves results on relative phase and amplitude of the field

(Supplementary Note 6; Supplementary Figs 6–8).
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B200 nm from the surface as shown in Fig. 1b,c. General
considerations (Supplementary Note 9; Supplementary Fig. 11)
based on the adiabaticity parameter suggest that the streaking
curve should only be shifted on the order of � 10 as with respect
to the vector potential of the near fields at the emission point.
This is confirmed by simulations, revealing a minor contribution
of � 20 as (Fig. 3d), which is small compared with the measured
shift (Supplementary Fig. 12). The measured streaking curve thus
provides direct access to the temporal evolution of the vector
potential and consequently also the electric near fields around the
nanotaper through equation 1.

In conclusion, we have successfully implemented ANNS on Au
nanotapers. By theoretically analysing the photoelectron trajec-
tories and the spatial homogeneity of the near fields, we were able
to directly access the local near fields on nanometre spatial and
attosecond temporal scales. Our measurements show that the
near fields are shifted by (200±50) as with respect to the incident
laser field, in good agreement with the theoretical shift of 300 as.
Our approach paves the way towards studying more complex

structures, including the characterization of ultrafast nanocircuits.
Understanding the local near fields, for example, in simple
optical-field-driven switches, will allow constructing more
complex, coupled nanostructures that may lead to the initial
building blocks for petahertz electronics. Spatial resolution can be
achieved by scanning the XUV beam (with a smaller focus size)
over the surface, or by using a photoemission electron
microscope.

Methods
Experimental scheme for ANNS. Few-cycle NIR laser pulses (4.5 fs centred at
720 nm) are produced using a Ti:Sa laser system (Femtopower Compact Pro,
Femtolasers) together with a hollow core fibre for spectral broadening and
subsequent recompression by chirped mirrors. The vacuum set-up used in our
experiments is described in more detail in Supplementary Note 1 and Supplementary
Figs 1 and 2. In brief, focusing the few-cycle pulses into Ne gas generates high
harmonic radiation. The high harmonics are inherently synchronized in time to the
NIR laser pulses that generated them. The high harmonics and NIR are spatially and
spectrally separated into two annular parts using a 0.15-mm-thick Zr foil mounted on
a pellicle, fabricated from nitrocellulose. The co-propagating laser pulses are focused
(focal length f¼ 12.5 cm) onto a nanoscopic sample (wet-etched Au taper, 100-nm
apex radius and opening angle of 10�) using an annular double mirror, the inner part
of which is mounted on a piezo delay stage, introducing a variable attosecond delay
between the XUV and NIR pulses. This mirror also spectrally selects a 7 eV band-
width of high harmonics centred at 95 eV to produce an isolated 220 as pulse. We
define the zero time delay between the pulses to be the time, at which the maxima of
the intensity envelopes coincide. The streaking spectrograms in Fig. 3 were recorded
by using a TOF spectrometer to measure the photoelectron spectrum, as a function
of the time delay between the two pulses.

Three-dimensional motorized stages facilitate positioning the taper with
nanometre precision. In addition to the nanotaper target, the stages allow to
position a gas nozzle in the laser focus offering the possibility to characterize the
NIR-field and the XUV-pulse parameters by recording a reference streaking trace
in neon. Photo-excited electrons are propagating through the near field of the
nanotaper and the NIR-laser field, the latter polarized parallel to the taper axis,
accelerating or decelerating the electrons on their way to the TOF. The TOF of the
electrons is recorded and afterwards converted to kinetic energy. Due to the
vanishingly small count rates at high energies of o0.1 counts per shot, a lens
voltage of 500V was applied to the TOF to enhance the high-energy counts.

Compared with the gas streaking, electron count rates are more than one order
of magnitude lower from the nanotaper because of the nanoscale size of the sample.
This leads to the overall acquisition times of up to a few hours to obtain reasonable
statistics of the streaking trace. The acquisition time is mainly limited by the time
the carrier-envelope phase (CEP) can be locked. To exclude the phase drifts and
instabilities during measurements, several nanotaper and gas streaking
spectrograms are recorded, compared and, for stable conditions, superimposed.

In contrast to gas phase streaking, the expanded density of states of the Au
nanotaper target leads to severe broadening of the energy spectrum, resulting in
streaking curves with a width of 420 eV. Inelastic scattering of photoelectrons on

Figure 3 | Analysis of delay shifts between streaking of a tapered

nanowire and gas. Measured data for (a) the Au nanotaper and (b) Ne. The

right panels of the spectrograms show electron spectra for a fixed delay of

�0.2 fs (nanotaper) and 0 fs (gas) illustrating extraction of the streaking

curves. A Fermi function (red) is fitted to the cutoff edge of the spectrum, since

the high-energy part of the spectrum is exclusively determined by gold. The

turning points of the Fermi functions for different delay times provide the curves

depicted by symbols in a and b (Supplementary Note 3; Supplementary Figs 4

and 5). The fine structure in the nanotaper streaking spectrograph in a results

from experimental noise, which is predominantly from counting statistics.

Typically gas streaking spectra were recorded with count rates of B2 counts

per laser shot, while tip streaking spectra were recorded with count rates of

o0.1 counts per laser shot. (c) The retrieved curves are smoothed by Fourier

filtering (solid lines) allowing to determine the shift Dt between them for every

delay. (d) The streaking curve retrieved from a Monte Carlo simulation

(symbols; Methods; Supplementary Note 4). The purple and light blue lines

illustrate streaking curves for electrons emitted from the front of the nanowire

at y¼ � 200nm and y¼ � 3,000nm, respectively. The solid green line shows

the streaking curves from the reference in neon gas. To aid comparison of the

streaking curves, the reference gas streaking trace was upshifted in energy to

the streaking traces from the gold tip. The inset shows the relation between the

simulated streaking curve (solid line) and the local vector potential of the near

field (dashed line) at the emission point.
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their way to the surface additionally broadens the spectra. Irrespective of these
effects, analysis of electrons with kinetic energies close to the high-energy cutoff of
the XUV photoemission provides access to the near-field dynamics at the surface of
the Au nanotaper.

Nanotaper preparation. Gold nanotapers are produced from 0.1-mm-thick poly-
crystalline Au wires in a lamella drop-off technique by wet electrochemical etching
using 90% saturated KCl as etchant. Using this method, apex radii between 20 and
100nm can be obtained with an opening angle of typically 10�. Excellent surface quality
with roughness o0.8nm can extend up to 300mm from the apex downwards35.

Simulation details. The optical near fields are calculated using the FDTD approach
for a nanocylinder with a radius of 100nm and half sphere at the apex. NIR fields are
simulated by a Gaussian pulse centred at 720nm and a duration of 4.5 fs (full-width at
half-maximum, FWHM). The attosecond near-field streaking process was modelled
similar to ref. 19, assuming an XUV spot size of 5mm (FWHM) and an IR laser
intensity of 1012Wcm� 2. For the trajectory simulations using a Monte Carlo approach
for retrieval of the streaking spectrogram, electrons are initialized at random positions
on the nanotaper surface, by projecting the spatial profile of the XUV beam on the
nanotaper. Random initial energy is given by the experimental XUV photoelectron
spectrum. The electron emission time distribution is given by the XUV pulse duration
(220 as FWHM), while the emission angle distribution is assumed to be isotropic.
Subsequently to their photoemission, electrons are propagated classically in the electric
near fields around the nanotaper. Only electrons having a final propagation direction
within the detection angle of the TOF (22.5� with respect to the taper axis) are recorded.
The streaking curves from selected emission points were calculated assuming a fixed
initial energy and emission angle, and neglecting the finite duration of the XUV pulse.

The expected response function in Fig. 4b,c) is obtained by calculating the
electric fields with the same approach as above using a tapered nanowire with an
opening angle of 10� and 50 nm radius of the hemisphere. The response is averaged
over 104 points on the surface, weighted by the XUV beam profile. The width
corresponds to the s.d.

Electric field and response function reconstruction. In the ponderomotive
streaking regime, the electric fields can be approximated as homogeneous and the
final change of momentum Dp of the electrons emitted at time t0 can directly be
related to the component of the vector potential A parallel to the emission
direction: Dp¼ � e A(t0) (in the Coulomb gauge). This allows a direct recon-
struction of the local electric field E(t) from the measured shift DEkin in the kinetic
energy of the electrons recorded within the streaking spectrogram:

E t0ð Þ ¼ 1
2e

ffiffiffiffiffiffiffiffi
2me

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 þDEkinð Þ

p @DEkin t0ð Þ
@t0

ð2Þ

where e is the elementary charge, me the mass of the electron and E0 is the initial
kinetic energy. The values DEkin and E0 are obtained from the extracted streaking
curve. The Fourier-filtered curves allow a direct calculation of the derivative and
reconstruction of the amplitude and phase of the electric field in a delay-dependent

manner. The amplitude of the incident laser electric field obtained from the gas
streaking measurements is typically underestimated from gas measurements. For
correction factors, the field amplitudes from gas measurements are compared with the
expected field amplitudes from the cutoff energies of direct strong-field electron
emission (Supplementary Note 4). The response function is retrieved by discrete
Fourier transforming the complex electric fields reconstructed from the gas and
nanowire measurements, and comparing amplitude with phase in the spectral domain.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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