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Fractal free energy landscapes in structural glasses
Patrick Charbonneau1,2,3, Jorge Kurchan4, Giorgio Parisi5,6, Pierfrancesco Urbani7 & Francesco Zamponi3

Glasses are amorphous solids whose constituent particles are caged by their neighbours and

thus cannot flow. This sluggishness is often ascribed to the free energy landscape containing

multiple minima (basins) separated by high barriers. Here we show, using theory and

numerical simulation, that the landscape is much rougher than is classically assumed. Deep in

the glass, it undergoes a ‘roughness transition’ to fractal basins, which brings about

isostaticity and marginal stability on approaching jamming. Critical exponents for the basin

width, the weak force distribution and the spatial spread of quasi-contacts near jamming

can be analytically determined. Their value is found to be compatible with numerical

observations. This advance incorporates the jamming transition of granular materials into the

framework of glass theory. Because temperature and pressure control what features of the

landscape are experienced, glass mechanics and transport are expected to reflect the features

of the topology we discuss here.
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U
nderstanding the dynamics of glasses is one of the oldest
and most challenging problems in the theory of matter.
The classical thermodynamic picture interprets the slow

relaxation of glasses in terms of a free energy landscape with fairly
simple structural features (Fig. 1): each minimum is a stable
amorphous glass state, high frequency relaxations correspond to
vibrational excitations of the state and slow relaxations correspond
to jumps between different states1–3. Yet experimental and
numerical observations suggest that this simple landscape
description—with essentially only one type of barrier—is
insufficient to capture the complexity of glassy dynamics. Low-
temperature glasses exhibit an intermediate slow (Johari-Goldstein)
relaxation whose timescale is indeed difficult to interpret as
one corresponding to jumps between widely different states4.
It has thus been proposed that the landscape features narrow
sub-basins, separated by small barriers, that aggregate into
wider metabasins, separated by large barriers (Fig. 1). Johari-
Goldstein relaxation processes would then connect sub-basins
within a same metabasin4,5. Direct numerical investigations have
confirmed the metabasin organization and thereby improved the
phenomenological description of transport6,7. Deep within the glass
phase, the out-of-equilibrium dynamics is also unable to properly
sample the distribution of barriers associated with the complex sub-
basin structure, which could explain why describing it with a single
fictive temperature is not possible8,9.

A disordered ensemble of (nearly) hard spheres, that is,
spherical particles that cannot overlap, is often taken as a simple
model for glasses, both in theoretical and experimental studies.
The behaviour of static assemblies of macroscopic spheres10,
colloidal suspensions11–13 and dynamically agitated ensembles of
grains14 is indeed akin to that of thermal glasses. Like thermal
glasses, hard spheres can also be theoretically described in terms
of a complex free energy landscape dominated by entropic
effects15; the same analysis tools can be used for both systems16,
underlying the similarity of their dynamical behaviour17 and

of their phase diagram in terms of pressure and density18. In
addition, when hard sphere interactions are considered, a new
kind of geometric phase transition appears, the jamming
transition19–21, that can be characterized in two equivalent
ways. From a thermodynamic point of view, compressing a hard
sphere glass to infinite pressure results in an amorphous jammed
packing in which particles are completely arrested and
mechanically equilibrated18. From a rheological point of view,
hard sphere glass rigidity is entropic before reaching the jamming
transition, and (relaxing the harshness of the hard sphere
repulsion) mechanical beyond jamming, as in low-temperature
molecular glasses22. On approaching jamming, hard sphere
glasses are marginally stable23–25: they have very soft
vibrational modes and excitations that extend over a wide range
of timescales19,25 and can be characterized in terms of critical
scalings similar to ordinary phase transitions, see refs 20,21 for
reviews. The critical properties of the jamming transition hence
provide additional insights into the structure of the landscape. Yet
neither the marginality of the basins nor the smallness of the
barriers associated with the soft modes fit in the simple landscape
picture18, which is hence unable to explain the critical properties
of the jamming transition.

In the late eighties, Kirkpatrick, Thirumalai and Wolynes
proposed that mean-field disordered models contain the essential
features of glassy landscapes26–28. These models fall in two broad
universality classes: the so-called Random First Order (the simple
picture of a stable glass, with featureless basins and large
barriers)26,27 and another class where one large state is broken
up in a fractal hierarchy of basins within basins, discovered by
one of us in the Sherrington-Kirkpatrick (SK) model29,30. The
first class yields, close to the glass transition, a two-step dynamical
relaxation31 in the same universality class as the mode-coupling
theory17,32. It was thus taken to represent (fragile) structural
glasses, at least close to the glass transition—hence the name
Random First Order Transition (RFOT) associated with this
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Figure 1 | Free energy landscape with simple basins, metabasins and fractal basins. Schematic depictions of (a) the liquid state at packing fractions j
that are smaller than the glass transition jg, and of free energy basins for different landscape scenarios: (b) simple stable basins, (c) metabasins

of sub-basins (d) and metabasins of marginal basins. The simple landscape description is akin to boating on a system of lakes separated by high mountains.

In the liquid, all of space can be explored. At lower water levels, each basin is a different glass. The free energy barriers hinder passing from one

glass to another (the so-called a-relaxation); the basin width allows for vibrational relaxation. Both in c and d, the water level further determines what

features of the landscape are experienced. Deep into the glass, the landscape roughness results in intra-state barriers that are associated with secondary

relaxations. In d, at very low water levels (right)—deep into the fractal glass—lakes transform into a complex wetland with a hierarchy of small

ponds. (e) The very bottom of each of these ponds corresponds to a given realization of the force network (red lines), but the identification of the force

contacts remains undetermined before the fractal regime is reached (dashed line).
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proposal. Gardner, however, introduced a twist to this
classification33. She found that, when continued deep in the
glass phase, RFOT systems generically reach another phase
transition. At this transition, each individual amorphous state
(basin) becomes a metabasin by breaking into a full fractal
hierarchy of sub-basins akin to that of the SK model, while
retaining its identity as a metabasin. Surprisingly, despite an early
comment to the effect that this ‘fractal phase’ might be related to
secondary relaxations in real glasses26, it has since remained
somewhat of an intellectual curiosity.

Although the RFOT scenario was initially proposed as an
analogy, today we know it to be exact for particles in the limit of
large spatial dimensions d (refs 34–36). Solving a problem
through an expansion around the limit d-N is an established
strategy in quantum mechanics, atomic physics and statistical
mechanics when there are no small parameters37,38, and the glass
problem is no exception. The question whether a given feature is
captured by RFOT then becomes whether that same feature
extrapolates continuously from d¼ 3 to d-N, a fact that may be
checked with numerical simulations. It is numerically found that
the main features of the bottom of the basins, which are related to
jamming, are extremely stable with varying dimension39–41; note
by contrast that the behaviour of high barriers, which are
connected to the relaxation around the glass transition, remains
the object of lively debates2,42,43.

The main object of this paper is to report that the exact hard
sphere solution in the limit d-N predicts the existence of a
Gardner transition to a fractal phase in the glass regime, and that
taking this transition into account is crucial to understanding the
physics of jamming (Fig. 1). It affects the out-of-equilibrium
dynamics deep in the glass phase9,44–46, incorporating (at least
partially) secondary relaxations, a point that we here only briefly
touch upon. Sub-basins and barriers of a wide variety of sizes also
bring along marginality and soft modes, features that were absent
in the original RFOT scenario. Their inclusion allows us to make
contact with and incorporate the features of jamming theory
associated with marginality and isostaticity23–25. More
specifically, we show that (i) the marginal and fractal phase
deep inside hard sphere glasses fully contains the jamming
transition; (ii) taking this result into account, one can make
analytic predictions for the critical exponents of the jamming
transition that are fully compatible with observations; and (iii)
one can compute the probability distribution of the forces in
jammed packings, which displays an analogue of the Coulomb
gap47, resulting in a power-law scaling of the distribution of small
forces40,48. Because the critical properties of jamming are
independent of spatial dimension39–41, the results obtained in
d-N immediately translate to experimental systems in d¼ 2, 3
and hence provide a first unambiguous application of the fractal
phase in finite dimension.

Results
Phase diagram. Using an approach similar to that used for sol-
ving the SK model, the exact d-N solution for d-dimensional
identical hard spheres of unit diameter can be formulated in
terms of a caging order parameter D(y) (refs 29,30). This
functional order parameter, which encodes the width D of
metabasins on a (properly defined) scale y, is obtained by
numerically solving a set of integro-differential equations
(Supplementary Note 1) and then used to calculate the theore-
tical liquid–glass phase diagram (Fig. 2). The theory predicts that
a compressed liquid falls out of equilibrium and becomes a glass
at a pressure that depends on the compression rate. Once in a
glass state, further compression results in a quick increase of the
system pressure p, and on jamming p-N (ref. 18). The final

jamming density depends on compression speed, hence defining a
J-line of jammed states18. Two examples of glass compression
obtained using an approximate state following are reported in
Fig. 2 (ref. 49).

Independently of compression rate, the glass basin in which the
system is initially trapped undergoes a Gardner transition33, at a
line computed in ref. 36. Our key result is that, at pressures above
this line, basins transform into metabasins that contain a
collection of marginally stable glasses, a phenomenon that is
described by a non-trivial caging order parameter D(y) as in the
SK model29. Finding the solution that describes the marginal
phase allows us to delimit the marginal phase boundary
(Supplementary Note 1) to within the Gardner transition line
of ref. 36, the J-line and the ‘threshold’ line determined following
the prescription of ref. 46. The fact that within this region at least
one eigenvalue of the stability matrix in the free energy space
vanishes confirms that this phase is indeed marginally
stable (Supplementary Note 1)50. We also find that, while the
radius of the innermost fractal basins shrinks to zero as a power-
law DEABp� k (see below), the radius of the largest metabasins
remains of order one. Close to jamming, the total entropy of a
group of metabasins of width D grows as D1/k, hence the basins
have a phase space structure whose fractal dimension is 2/k (see
Supplementary Note 1 for a more detailed discussion). The
marginal phase is thus also fractal.

The existence of the marginal phase can be qualitatively
tested by molecular dynamic (MD) numerical simulations in
finite d (Supplementary Note 2) by considering the outcome
of a slow compression from the liquid up to jamming40,51.
Jammed systems are isostatic, and thus particles have an
average of 2d force-bearing neighbours19,25,40,52–54, which is
much smaller than the O(ed) neighbours that isotropically cage a
particle in an equilibrated dense liquid. Because the identity of the
force-bearing neighbours at jamming uniquely characterizes the
state, their emergence sensitively depends on the landscape
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Figure 2 | Phase diagram of infinite-dimensional amorphous hard

spheres. Pressure p—packing fraction j phase diagram for d-N hard

spheres. The white region indicates the regime where the (meta)basin

structure is present, either as a simple stable glass or as a marginal fractal

glass. The left-most boundary of the glass region is the threshold line.

The ‘J-line’ of jammed packings is found along p¼N, which always falls

within the marginal phase. Although solving the mean-field out-of-

equilibrium dynamics of hard spheres remains an open problem, an

adiabatically slow compression should leave the equilibrium liquid line and

eventually reach the J-line, while remaining within the white region. The

green lines are two examples of an adiabatic following of a glass state18.
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structure (Fig. 1). In the simple basin scenario, force-bearing
neighbours at jamming should be fully determined immediately
on leaving the equilibrium liquid; in the meta/sub-basin scenario,
that determination should only occur once sufficiently deep in the
glass for transitions between sub-basins to be fully suppressed; in
a fractal phase, by contrast, the contacts should be gradually
determined as jamming is approached. To test this scenario, we
consider a glass configuration at pressure pinit. Starting from this
configuration, we perform several independent compressions up
to pf¼ 1010 and for each compressed configuration we measure

the force network. We obtain a set of contact variables f að Þ
ij , which

are set to unity if particles i and j form a force-bearing contact in

configuration a and to zero otherwise. The average of hf að Þ
ij f bð Þ

ij i
over pairs ab of compressed configurations and over contacts ij
provides a measure of similarity between the force networks. The
fact that this quantity increases smoothly on increasing pinit
indicates that the force network is only partially encoded in the
initial configuration, in support of the fractal landscape scenario
(Fig. 3a and Supplementary Note 2).

Criticality of the jamming transition. The equations that
describe the marginal phase are formulated in terms of the caging
order parameter D(y) and the pair correlation function g(r),
which also encodes the probability distribution of forces in the
packing. On approaching the J-line, that is, as a hard sphere glass
approaches p-N, these equations develop a scaling regime
(Fig. 3d) that is characterized by three main critical exponents: y
for the weak forces, a for the quasi-contacts and k for D itself. A
(non-trivial) generalization of the approach developed for the SK

model55 allows us to obtain theoretical values for these exponents
(Supplementary Note 1). Interestingly, the condition that fixes
their value is precisely equivalent to the marginal stability
condition. The theory therefore predicts that the criticality of the
jamming transition directly follows from its location inside the
marginal phase.

A striking signature of marginality is the scaling of the inner-
most basin width captured by the Edwards-Anderson cage size
DEABp� k. Although k¼ 3/2 was proposed in earlier
studies23,25,56, the theory predicts a slightly smaller k¼ 1.41574
that is in remarkable agreement with our numerical results
(Fig. 3c). Because single-particle caging by immediate neighbours
(a simple Einstein model for glasses) would give k ¼ 2 (ref. 56),
ko2 implies that fluctuations near jamming are divergently
larger than for independent vibrations, in support of their
cooperative nature25,56. Note that if one ignores the fractal phase,
an explicit computation erroneously gives k¼ 1 (ref. 36). Also,
note that the exponent k controls the fractal dimension of the
basins, as discussed above.

The pair correlation function g(r) bears a signature of the
criticality at the jamming transition. The theory predicts,
consistently with the analysis of ref. 57, that when p-N, g(r)
develops an isostatic contact peak characterized by a scaling
function F (l)�g(r)/g(1) for l¼ (r� 1)p (Fig. 4 and
Supplementary Note 1). It also predicts that the scaling function
of the contact peak decays as F (l)Bl� 2� y at large l. The
distribution P(f) of inter-particle forces in the packing, which is
related to the scaling function of the contact peak by F lð Þ ¼R1
0 df f P fð Þe� lf (refs 18,40,57), thus also decays as a power law

P(f)Bf y at small forces. Note that, as observed in ref. 58, this
phenomenon is closely related to what happens to the
distribution of frozen fields in the SK model59, which is
thought to explain the Coulomb gap in interacting electron
systems47. Beyond the contact peak, the slower decay of pair
correlation function follows another power-law g(r)B(r� 1)� a

that describes the abundance of quasi-contacts. These scalings of
g(r) are crucial for determining the mechanical stability of
packings48,58. Perturbing a packing breaks some contacts with
small forces, while also forming new contacts from what
previously were quasi-contacts. On the basis of this observation,
a scaling relation for mechanical stability a¼ 1/(2þ y) can be
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Figure 3 | Force network and position overlaps in the fractal basin.

(a) Overlap between the force network edges fij¼0, 1 that connect two

particles i and j in two glass configurations a and b (at pressure pf¼ 1010),

obtained by independent compression of the same initial configuration at

initial pressure pinit (Supplementary Note 2). (b) Time-evolution of the

mean-square displacement D(t) for glasses at p ¼ 102, 103, 104, 105, 106,

107 and 108 in d¼4. The solid line indicates the ballistic dt2 behaviour.

The long-time value is the cage size dDEA. (c) The pressure evolution of the

cage size DEA in various dimension closely follows a power-law Bp�k with

the theoretical value k ¼ 1.41575. (d) Analytical results for the order

parameter D(y) at 2dj=d ¼ 10. Increasing the cutoff ymaxBp indicates that

the scaling regime D(y)By� k extends to all y. (Supplementary Note 1)
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derived58. Remarkably, the exponents predicted by our theory,
a¼ 0.41269 and y¼ 0.42311, satisfy this scaling relation to within
numerical precision. Previous estimates of these exponents were
also obtained by numerical simulation. The quasi-contact
exponent a has been measured by several groups in dimension
d ranging from 2 to 13, all obtaining roughly aE0.4
(refs 39,40,48,57,60), the most precise estimates being
a¼ 0.41(3) (ref. 40). The weak force exponent y is, however,
more difficult to measure, and values spanning the interval
yE0.2�0.45 have been reported40,48. Although the existence of a
second exponent y0oy has been shown to affect the tail of P(f)
(ref. 48), its role in determining F (l) and its large-dimensional
scaling remains to be clarified. Additional numerical simulations
are thus needed to test the theory more stringently.

A prediction for the force distribution P(f) at jamming is also
available from the theory. However, because this function is not
completely determined by the scaling regime, it must be obtained
by solving the full equations that describe the marginal
phase. Numerically, the function F lð Þ ¼

R1
0 df f P fð Þe� lf

is much easier to measure than P(f) because it only depends on
structural information, while, in hard spheres, forces must be
determined from the collision dynamics. The theoretical predic-
tion for the scaling function F (l) is tested against numerical
simulations in Fig. 4, with very good agreement.

Discussion
We have described the marginal phase that is present below the
Gardner transition for hard spheres in d¼N. Using this result we
have shown that the jamming transition happens inside the
marginal phase and that its low-dimensional criticality is well
described by our approach. This analysis opens the way for
analytically determining many other properties of jammed packings,
such as their shear modulus61, and the properties of avalanches62.

The microscopic explanation of several hitherto mysterious
properties of low-temperature glasses might also emerge from
this work. (i) A well-attested observation is that glasses that are
quenched deeply and rapidly continue to age after the quench,
even if the system is well inside the glass phase and there is no
activation energy or volume that allows for changes of basin5. If
the same final pressure is reached with a slower annealing
protocol, the subsequent ageing effect is less marked. This
observation becomes quite natural if we think in terms of the
diagram of Fig. 2. Metastable states that may be reached with a
faster annealing become fractal (that is, undergo a Gardner
transition) at pressures much closer to the liquid–glass transition,
while the better annealed ones reached with slower protocols only
do so at higher pressures. (ii) A related observation is that the
existence of a transition from stable to marginal glass along the
threshold line (marked by a diamond in Fig. 2) might affect the
ageing dynamics after a deep and very fast quench9,46, inducing a
change in the ageing properties as a function of the final
temperature akin to those observed in some polymer glasses63. A
more detailed investigation of these effects will require
characterizing the off-equilibrium dynamics in the marginal
phase9,46, which at present is only poorly understood.
(iii) Another fact that does not fit the standard picture is the
observation of dynamical heterogeneities in low-temperature
glasses64,65 at timescales much shorter than the inter-basin
relaxation. Low-temperature dynamical heterogeneities with a
diverging four-point susceptibility are a signature of a fractal
phase30, while they are expected to be absent within a simple glass
basin. Here the theory is well developed, but a detailed
comparison with experiments is still missing. (iv) The quantum
properties of low-temperature glasses has long been described in
terms of a set of tunnelling two-level systems (TLS), characterized

by a non-trivial distribution of barriers66. The origin of TLS is not
understood, but it has been proposed, using schematic models,
that TLS might be due to low-energy excitations associated with a
marginally stable phase of the kind discussed above67. Within our
approach, an exact computation of the quantum properties at
very low temperatures is viable, and one may hence expect that
two-level systems could be put on a first-principle footing. (v) As
mentioned in the introduction, Johari-Goldstein processes can be
interpreted as transitions between sub-basins belonging to a same
metabasin4,5,26. This interpretation naturally explains their many-
body origin68, but transforming this physical intuition in a
theoretically solid explanation requires additional work. Although
in the limit d-N the equilibrium supercooled liquid region is
always far away from the marginal phase, where Johari-
Goldstein-like relaxations are expected, we suspect that
activated processes, which are absent in d-N but play a
prominent role in d¼ 3, might bring supercooled liquids much
closer to the marginal region. The contribution of Johari-
Goldstein processes to glass dynamics may thus be enhanced in
d¼ 3 compared with the mean-field prediction. In the d¼N

limit, the barriers controlling inter-basin relaxation should indeed
scale as d, and the largest ones, separating sub-basins, as d1/3,
which suggest the existence of quasi-localized excitations69

(stringlike, in three dimensions70).

Methods
Analytical results. Results are based on the combination of analytical and
numerical methods. Analytical results come from the exact solution of hard spheres
in the limit d-N, which, for convenience, is obtained using the replica method,
but any other method would give the same result. The fractal phase is described by
a function D(y) for yA[1,ymax], as in the SK model29. The cutoff ymaxBp diverges
with pressure. With these definitions, DEA¼D(ymax) is the mean square
displacement in the smallest sub-basins, where D(y) can be computed by
numerically solving a set of coupled integro-differential equations obtained from
the replica approach (Supplementary Note 1).

Numerical simulations. Numerical results are obtained by standard event-driven
molecular dynamic simulations in d¼ 3–8 (refs 39,40). Slow compressions are
made using the Lubachevsky-Stillinger algorithm39 (Supplementary Note 2).
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