Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth

Abstract

The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth’s early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent–continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamics of slab break-off controlled continental recycling under present-day mantle Tp of 1,275 °C (model pcff).
Figure 2: Dynamics of peeling-off controlled continental recycling under higher mantle Tp of 1,475 °C (model pprc).
Figure 3: Effect of LCC eclogitization and mantle Tp on recycling magnitude.
Figure 4: Changing orogenic-recycling dynamics with the age of Earth.

Similar content being viewed by others

References

  1. Armstrong, R. L. & Harmon, R. S. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth [and discussion]. Phil. Trans. R. Soc. Lond. A 301, 443–472 (1981).

    Article  Google Scholar 

  2. Bowring, S. & Housh, T. The Earth’s early evolution. Science 269, 1535–1540 (1995).

    Article  Google Scholar 

  3. Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

    Article  Google Scholar 

  4. Cawood, P. A., Hawkesworth, C. J. & Dhuime, B. The continental record and the generation of continental crust. Bull. Geol. Soc. Am. 125, 14–32 (2013).

    Article  Google Scholar 

  5. Rudnick, R. L. Making continental crust. Nature 378, 571–578 (1995).

    Article  Google Scholar 

  6. Kay, R. W. & Mahlburg-Kay, S. Creation and destruction of lower continental crust. Geol. Rundsch. 80, 259–278 (1991).

    Article  Google Scholar 

  7. Willbold, M. & Stracke, A. Formation of enriched mantle components by recycling of upper and lower continental crust. Chem. Geol. 276, 188–197 (2010).

    Article  Google Scholar 

  8. Belousova, E. A. et al. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119, 457–466 (2010).

    Article  Google Scholar 

  9. Kamber, B. S., Whitehouse, M. J., Bolhar, R. & Moorbath, S. Volcanic resurfacing and the early terrestrial crust: zircon U–Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland. Earth Planet. Sci. Lett. 240, 276–290 (2005).

    Article  Google Scholar 

  10. Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015).

    Article  Google Scholar 

  11. Tang, M., Chen, K. & Rudnick, R. L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372–375 (2016).

    Article  Google Scholar 

  12. Lee, C. T. A. et al. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9, 417–424 (2016).

    Google Scholar 

  13. Martin, H. & Moyen, J. F. Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology 30, 319–322 (2002).

    Article  Google Scholar 

  14. Laurent, O., Martin, H., Moyen, J. F. & Doucelance, R. The diversity and evolution of late-Archean granitoids: evidence for the onset of ‘modern-style’ plate tectonics between 3.0 and 2.5 Ga. Lithos 205, 208–235 (2014).

    Article  Google Scholar 

  15. Jacobsen, S. B. Isotopic and chemical constraints on mantle-crust evolution. Geochim. Cosmochim. Acta 52, 1341–1350 (1988).

    Article  Google Scholar 

  16. Johnson, T. E., Brown, M., Kaus, B. J. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2013).

    Article  Google Scholar 

  17. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  18. Korenaga, J. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci. 41, 117–151 (2013).

    Article  Google Scholar 

  19. Brown, M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34, 961–964 (2006).

    Article  Google Scholar 

  20. van Hunen, J. & Moyen, J. F. Archean subduction: fact or fiction? Annu. Rev. Earth Planet. Sci. 40, 195–219 (2012).

    Article  Google Scholar 

  21. Sizova, E., Gerya, T., Stüwe, K. & Brown, M. Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Res. 271, 198–224 (2015).

    Article  Google Scholar 

  22. Clift, P. D., Vannucchi, P. & Morgan, J. P. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth-Sci. Rev. 97, 80–104 (2009).

    Article  Google Scholar 

  23. Scholl, D. W. & von Huene, R. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens. Geol. Soc. Lond. Spec. Publ. 318, 105–125 (2009).

    Article  Google Scholar 

  24. Stern, R. J. & Scholl, D. W. Yin and yang of continental crust creation and destruction by plate tectonic processes. Int. Geol. Rev. 52, 1–31 (2010).

    Article  Google Scholar 

  25. Sizova, E., Gerya, T. & Brown, M. Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Res. 25, 522–545 (2014).

    Article  Google Scholar 

  26. van Hunen, J. & van den Berg, A. P. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103, 217–235 (2008).

    Article  Google Scholar 

  27. Chardon, D., Gapais, D. & Cagnard, F. Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic. Tectonophysics 477, 105–118 (2009).

    Article  Google Scholar 

  28. Cagnard, F., Barbey, P. & Gapais, D. Transition between ‘Archaean-type’ and ‘modern-type’ tectonics: insights from the Finnish Lapland Granulite Belt. Precambrian Res. 187, 127–142 (2011).

    Article  Google Scholar 

  29. Magni, V., Faccenna, C., Van Hunen, J. & Funiciello, F. Delamination vs. break-off: the fate of continental collision. Geophys. Res. Lett. 40, 285–289 (2013).

    Article  Google Scholar 

  30. van Hunen, J. & Allen, M. B. Continental collision and slab break-off: a comparison of 3-D numerical models with observations. Earth Planet. Sci. Lett. 302, 27–37 (2011).

    Article  Google Scholar 

  31. Duretz, T., Gerya, T. V. & May, D. A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics 502, 244–256 (2011).

    Article  Google Scholar 

  32. Wu, Y., Fei, Y., Jin, Z. & Liu, X. The fate of subducted upper continental crust: an experimental study. Earth Planet. Sci. Lett. 282, 275–284 (2009).

    Article  Google Scholar 

  33. Herzberg, C. et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem. Geophys. Geosyst. 8, Q02006 (2007).

    Article  Google Scholar 

  34. Hildebrand, R. S. & Bowring, S. A. Crustal recycling by slab failure. Geology 27, 11–14 (1999).

    Article  Google Scholar 

  35. Faryad, S. W., Kachlík, V., Sláma, J. & Jedlicka, R. Coincidence of gabbro and granulite formation and their implication for Variscan HT metamorphism in the Moldanubian Zone (Bohemian Massif), example from the Kutná Hora Complex. Lithos 264, 56–69 (2016).

    Article  Google Scholar 

  36. von Blanckenburg, F. et al. The origin of Alpine plutons along the Periadriatic Lineament. Schweiz. Mineral. Petrogr. Mitt. 78, 55–66 (1998).

    Google Scholar 

  37. Webb, A. A. G. et al. The Himalaya in 3D: slab dynamics controlled mountain building and monsoon intensification. Lithosphere L636-1 (2017).

  38. Bird, P. Continental delamination and the Colorado Plateau. J. Geophys. Res. Solid Earth 84, 7561–7571 (1979).

    Article  Google Scholar 

  39. Gerya, T. Precambrian geodynamics: concepts and models. Gondwana Res. 25, 442–463 (2014).

    Article  Google Scholar 

  40. Faccenda, M., Minelli, G. & Gerya, T. V. Coupled and decoupled regimes of continental collision: numerical modeling. Earth Planet. Sci. Lett. 278, 337–349 (2009).

    Article  Google Scholar 

  41. Dewey, J. F. Orogeny can be very short. Proc. Natl Acad. Sci. USA 102, 15286–15293 (2005).

    Article  Google Scholar 

  42. Condie, K. Accretionary orogens in space and time. Geol. Soc. Am. Memoirs 200, 145–158 (2007).

    Article  Google Scholar 

  43. Condie, K. Preservation and recycling of crust during accretionary and collisional phases of Proterozoic orogens: a bumpy road from Nuna to Rodinia. Geosciences 3, 240–261 (2013).

    Article  Google Scholar 

  44. Moyen, J. F. & Stevens, G. in Archean Geodynamics and Environments (eds Benn, K., Mareschal, J.-C. & Condie, K. C.) 149–175 (American Geophysical Union, 2006).

    Book  Google Scholar 

  45. Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).

    Article  Google Scholar 

  46. Campbell, I. H. & Davies, D. R. Raising the continental crust. Earth Planet. Sci. Lett. 460, 112–122 (2017).

    Article  Google Scholar 

  47. Lee, C. T. A. Treatise on Geochemistry Vol. 4, 2nd edn, 423–456 (Elsevier, 2014).

    Book  Google Scholar 

  48. Stern, R. J. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33, 557–560 (2005).

    Article  Google Scholar 

  49. Furnes, H., de Wit, M., Staudigel, H., Rosing, M. & Muehlenbachs, K. A vestige of Earth’s oldest ophiolite. Science 315, 1704–1707 (2007).

    Article  Google Scholar 

  50. Gerya, T. V. Introduction to Numerical Geodynamic Modelling (Cambridge Univ. Press, 2010).

    Google Scholar 

  51. Gerya, T. V. & Yuen, D. A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Inter. 163, 83–105 (2007).

    Article  Google Scholar 

  52. Schmeling, H. et al. A benchmark comparison of spontaneous subduction models—towards a free surface. Phys. Earth Planet. Inter. 171, 198–223 (2008).

    Article  Google Scholar 

  53. Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  54. Ranalli, G. Rheology of the Earth 2nd edn (Chapman Hall, 1995).

    Google Scholar 

  55. Kameyama, M., Yuen, D. A. & Karato, S.-I. Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth Planet. Sci. Lett. 168, 159–172 (1999).

    Article  Google Scholar 

  56. Evans, B. & Goetze, C. The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. J. Geophys. Res. 84, 5505–5524 (1979).

    Article  Google Scholar 

  57. Kocks, U. F., Argon, A. S. & Ashby, M. F. Thermodynamics and kinetics of slip. Progress Mater. Sci. 19, 1–281 (1975).

    Article  Google Scholar 

  58. Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article  Google Scholar 

  59. Gerya, T. V., Connolly, J. A. D., Yuen, D. A., Gorczyk, W. & Capel, A. M. Seismic implications of mantle wedge plumes. Phys. Earth Planet. Inter. 156, 59–74 (2006).

    Article  Google Scholar 

  60. Mishin, Y. A., Gerya, T. V., Burg, J.-P. & Connolly, J. A. D. Dynamics of double subduction: numerical modeling. Phys. Earth Planet. Inter. 171, 280–295 (2008).

    Article  Google Scholar 

  61. Gerya, T. V., Yuen, D. A. & Maresch, W. V. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett. 226, 101–116 (2004).

    Article  Google Scholar 

  62. Baumann, C., Gerya, T. V. & Connolly, J. A. D. Numerical modelling of spontaneous slab breakoff dynamics during continental collision. Geol. Soc. Lond. Spec. Publ. 332, 99–114 (2010).

    Article  Google Scholar 

  63. Burg, J.-P. & Gerya, T. V. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. J. Metamorph. Geol. 23, 75–95 (2005).

    Article  Google Scholar 

  64. Clauser, C. & Huenges, E. in Rock Physics and Phase Relations: A Handbook of Physical Constants (ed. Ahrens, T. J.) 105–126 (American Geophysical Union, 1995).

    Google Scholar 

  65. Hess, P. C. Origin of Igneous Rocks (Harvard Univ. Press, 1989).

    Google Scholar 

  66. Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

P.C. is funded by the Deutscher Akademischer Austauschdienst (Funding ID-57076385) and operating grants from Ruhr-Universität Bochum. T.G. received support from the ERC ITN projects SUBITOP (604713) and ZIP (674899) as well as from SNF projects Swiss-AlpArray (CRSII2_154434) and number 200020_166063. S.C. is funded by operating grants from Ruhr-Universität Bochum. Simulations were performed on the ETH-Zurich Brutus and Euler clusters.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and T.G. conceived the study. P.C. designed the study together with S.C. and T.G. P.C. conducted the numerical experiments, interpreted the results and formulated the MATLAB codes for calculating recycled volumes and post processing the numerical results. T.G. designed the 2D-thermomechanical code. All authors discussed the results, problems and methods, interpretation of the results, and participated in writing the paper.

Corresponding author

Correspondence to Priyadarshi Chowdhury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5934 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, P., Gerya, T. & Chakraborty, S. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth. Nature Geosci 10, 698–703 (2017). https://doi.org/10.1038/ngeo3010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing