Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protracted near-solidus storage and pre-eruptive rejuvenation of large magma reservoirs

Abstract

Building super-eruptive magma reservoirs in the cold, upper parts of Earth’s crust requires a significant influx of magma over an extended period, sufficient to allow the magma to accumulate, differentiate and periodically erupt. Some models favour magma storage in a cold non-eruptible state, requiring extensive reactivation of the reservoirs before eruption, whereas others suggest storage at higher temperature and lower crystallinity, implying that magma in such reservoirs is readily eruptible. Consequently, constraining volcanic hazards requires observations directly linking magma residence timescales to the thermal state and crystallinity of storage. Here we simultaneously determine crystallization temperatures and ages of magmatic crystals of zircon and titanite in the 900 km3 Kneeling Nun Tuff (New Mexico, USA), which allows us to place tight constraints on the long-term thermal evolution of the magma reservoir. We show that zircon and titanite crystals record more than 600,000 years of magma assembly and constrain the dominant storage conditions to low temperatures, set between the granitic solidus (680 to 700 °C) and the temperature of the onset of titanite crystallization (about 720 to 730 °C). We apply the zircon–titanite systematics to a suite of other super-eruptions and suggest that protracted low-temperature storage culminating in late-stage reheating is a widespread feature of large crystal-rich eruptions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zircon and titanite geochronology of the Kneeling Nun Tuff magmatic system.
Figure 2: Accessory mineral trace element record and thermometry of the Kneeling Nun Tuff.
Figure 3: Temporal evolution of temperature within large silicic magmatic reservoirs.
Figure 4: Ti-in-zircon and Zr-in-titanite thermometry of large volcanic magma reservoirs compared with a plutonic body.

Similar content being viewed by others

References

  1. Bachmann, O. & Bergantz, G. W. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J. Petrol. 45, 1565–1582 (2004).

    Article  Google Scholar 

  2. Burgisser, A. & Bergantz, G. W. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471, 212–215 (2011).

    Article  Google Scholar 

  3. Huber, C., Bachmann, O. & Dufek, J. Crystal-poor versus crystal-rich ignimbrites: a competition between stirring and reactivation. Geology 40, 115–118 (2012).

    Article  Google Scholar 

  4. Caricchi, L., Simpson, G. & Schaltegger, U. Zircons reveal magma fluxes in the Earth’s crust. Nature 511, 457–461 (2014).

    Article  Google Scholar 

  5. Parmigiani, A., Huber, C. & Bachmann, O. Mush microphysics and the reactivation of crystal-rich magma reservoirs. J. Geophys. Res. 119, 6308–6322 (2014).

    Article  Google Scholar 

  6. Annen, C., Blundy, J. D., Leuthold, J. & Sparks, R. S. J. Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230, 206–221 (2015).

    Article  Google Scholar 

  7. Karakas, O., Degruyter, W., Bachmann, O. & Dufek, J. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nat. Geosci. 10, 446–450 (2017).

    Article  Google Scholar 

  8. Reid, M. R., Coath, C. D., Harrison, T. M. & McKeegan, K. D. Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230Th–238U ion microprobe dating of young zircons. Earth Planet. Sci. Lett. 150, 27–39 (1997).

    Article  Google Scholar 

  9. Brown, S. J. A. & Fletcher, I. R. SHRIMP U-Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: evidence for >250 k.y. magma residence times. Geology 27, 1035–1038 (1999).

    Article  Google Scholar 

  10. Vazquez, J. A. & Reid, M. R. Probing the accumulation history of the voluminous Toba magma. Science 305, 991–994 (2004).

    Article  Google Scholar 

  11. Charlier, B. et al. Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. J. Petrol. 46, 3–32 (2005).

    Article  Google Scholar 

  12. Simon, J. I., Renne, P. R. & Mundil, R. Implications of pre-eruptive magmatic histories of zircons for U–Pb geochronology of silicic extrusions. Earth Planet. Sci. Lett. 266, 182–194 (2008).

    Article  Google Scholar 

  13. Claiborne, L. L., Miller, C. F., Flanagan, D. M., Clynne, M. A. & Wooden, J. L. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38, 1011–1014 (2010).

    Article  Google Scholar 

  14. Schmitt, A. K. Uranium series accessory crystal dating of magmatic processes. Annu. Rev. Earth Planet. Sci. 39, 321–349 (2011).

    Article  Google Scholar 

  15. Wotzlaw, J. F. et al. Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 41, 867–870 (2013).

    Article  Google Scholar 

  16. Barboni, M. et al. Warm storage for arc magmas. Proc. Natl Acad. Sci. USA 113, 13959–13964 (2016).

    Article  Google Scholar 

  17. Kaiser, J. F., de Silva, S., Schmitt, A. K., Economos, R. & Sunagua, M. Million-year melt–presence in monotonous intermediate magma for a volcanic–plutonic assemblage in the Central Andes: contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas. Earth Planet. Sci. Lett. 457, 73–86 (2017).

    Article  Google Scholar 

  18. Cooper, K. M. & Kent, A. J. R. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014).

    Article  Google Scholar 

  19. Ferry, J. M. & Watson, E. B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 154, 429–437 (2007).

    Article  Google Scholar 

  20. Hayden, L. A., Watson, E. B. & Wark, D. A. A thermobarometer for sphene (titanite). Contrib. Mineral. Petrol. 155, 529–540 (2008).

    Article  Google Scholar 

  21. Mason, B. G., Pyle, D. M. & Oppenheimer, C. The size and frequency of the largest explosive eruptions on Earth. Bull. Volcanol. 66, 735–748 (2004).

    Article  Google Scholar 

  22. Elston, W. E. Geology and Mineral Resources of Dwyer Quadrangle, Grant, Luna, and Sierra Counties, New Mexico Vol. 38 (New Mexico Bureau of Mines and Mineral Resources Bulletin, 1957).

    Google Scholar 

  23. Giles, D. L. Ash-flow tuffs of the Cobre Mountains. In Southern Arizona Guidebook III (ed. Titley, S. R.) 289–291 (Arizona Geological Society, 1968).

    Google Scholar 

  24. Elston, W. E., Seager, W. R. & Clemons, R. E. Emory Cauldron, Black Range, New Mexico, source of the Kneeling Nun Tuff. In Las Cruces Country: Fall Field Conference Guidebook 26 (eds Seager, W. R., Clemons, R. E. & Callender, J. F.) 283–292 (New Mexico Geological Society, 1975).

    Google Scholar 

  25. McIntosh, W. C., Chapin, C. E., Ratté, J. C. & Sutter, J. F. Time-stratigraphic framework for the Eocene-Oligocene Mogollon-Datil volcanic field, southwest New Mexico. Geol. Soc. Am. Bull. 104, 851–871 (1992).

    Article  Google Scholar 

  26. Wolff, J. A. et al. Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: a comparison of cool, wet and hot, dry rhyolitic magma systems. Lithos 236–237, 275–286 (2015).

    Article  Google Scholar 

  27. Forni, F. et al. The origin of a zoned ignimbrite: Insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy). Earth Planet. Sci. Lett. 449, 259–271 (2016).

    Article  Google Scholar 

  28. Bachmann, O., Dungan, M. A. & Lipman, P. W. The Fish Canyon magma body, San Juan volcanic field, Colorado: Rejuvenation and eruption of an upper-crustal batholith. J. Petrol. 43, 1469–1503 (2002).

    Article  Google Scholar 

  29. Molloy, C., Shane, P. & Nairn, I. Pre-eruption thermal rejuvenation and stirring of a partly crystalline rhyolite pluton revealed by the Earthquake Flat Pyroclastics deposits, New Zealand. J. Geol. Soc. Lond. 165, 435–447 (2008).

    Article  Google Scholar 

  30. Pamukcu, A. S., Carley, T. L., Gualda, G. A., Miller, C. F. & Ferguson, C. A. The evolution of the Peach Spring giant magma body: Evidence from accessory mineral textures and compositions, bulk pumice and glass geochemistry, and rhyolite-MELTS modeling. J. Petrol. 54, 1109–1148 (2013).

    Article  Google Scholar 

  31. Schmitz, M. D. & Bowring, S. A. U–Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U–Pb geochronology and its application to young volcanic rocks. Geochim. Cosmochim. Acta 65, 2571–2587 (2001).

    Article  Google Scholar 

  32. Schoene, B. & Bowring, S. A. U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib. Mineral. Petrol. 151, 615–630 (2006).

    Article  Google Scholar 

  33. McIntosh, W. C., Sutter, J. F., Chapin, C. E. & Kedzie, L. L. High-precision 40Ar/39Ar sanidine geochronology of ignimbrites in the Mogollon-Datil volcanic field, southwestern New Mexico. Bull. Volcanol. 52, 584–601 (1990).

    Article  Google Scholar 

  34. Holtz, F. & Johannes, W. Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos 32, 149–159 (1994).

    Article  Google Scholar 

  35. Cherniak, D. J. Zr diffusion in titanite. Contrib. Mineral. Petrol. 152, 639–647 (2006).

    Article  Google Scholar 

  36. Watson, E. B. Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. Trans. R. Soc. Edinburgh Earth Sci. 87, 43–56 (1996).

    Article  Google Scholar 

  37. Cooper, G. F., Wilson, C. J. N., Millet, M. A. & Baker, J. A. Generation and rejuvenation of a supervolcanic magmatic system: a case study from Mangakino volcanic centre, New Zealand. J. Petrol. 57, 1135–1170 (2016).

    Article  Google Scholar 

  38. Huber, C., Bachmann, O. & Manga, M. Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet. Sci. Lett. 283, 38–47 (2009).

    Article  Google Scholar 

  39. Morse, S. A. The fractional latent heat of crystallizing magmas. Am. Mineral. 96, 682–689 (2011).

    Article  Google Scholar 

  40. Huber, C., Bachmann, O. & Dufek, J. Thermo-mechanical reactivation of locked crystal mushes: melting-induced internal fracturing and assimilation processes in magmas. Earth Planet. Sci. Lett. 304, 443–454 (2011).

    Article  Google Scholar 

  41. Bachmann, O. & Dungan, M. A. Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. Am. Mineral. 87, 1062–1076 (2002).

    Article  Google Scholar 

  42. Xirouchakis, D., Lindsley, D. H. & Frost, B. R. Assemblages with titanite (CaTiOSiO4), Ca–Mg–Fe olivine and pyroxenes, Fe–Mg–Ti oxides, and quartz: part II. Application. Am. Mineral. 86, 254–264 (2001).

    Article  Google Scholar 

  43. Matthews, N. E., Vazquez, J. A. & Calvert, A. T. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U–Pb dating of sanidine and zircon crystals. Geochem. Geophys. Geosyst. 16, 2508–2528 (2015).

    Article  Google Scholar 

  44. Stelten, M. E., Cooper, K. M., Vazquez, J. A., Calvert, A. T. & Glessner, J. J. G. Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone caldera from zircon and sanidine geochronology and geochemistry. J. Petrol. 56, 1607–1641 (2015).

    Article  Google Scholar 

  45. Till, C. B., Vazquez, J. A. & Boyce, J. W. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming. Geology 43, 695–698 (2015).

    Article  Google Scholar 

  46. Kuiper, K. F. et al. Synchronizing rock clocks of Earth history. Science 320, 500–504 (2008).

    Article  Google Scholar 

  47. Rubatto, D. & Hermann, J. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem. Geol. 241, 38–61 (2007).

    Article  Google Scholar 

  48. Colombini, L. L., Miller, C. F., Gualda, G. A. R., Wooden, J. L. & Miller, J. S. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): elemental partitioning, phase relations, and influence on evolution of silicic magma. Mineral. Petrol. 102, 29–50 (2011).

    Article  Google Scholar 

  49. Bachmann, O., Dungan, M. A. & Bussy, F. Insights into shallow magmatic processes in large silicic magma bodies: the trace element record in the Fish Canyon magma body, Colorado. Contrib. Mineral. Petrol. 149, 338–349 (2005).

    Article  Google Scholar 

  50. McLeod, G. W. Titanite Zoning and Magma Mixing PhD thesis, Univ. Glasgow (2007).

  51. Sliwinski, J. T. et al. Rapid pre-eruptive thermal rejuvenation in a large silicic magma body: the case of the Masonic Park Tuff, Southern Rocky Mountain volcanic field, CO, USA. Contrib. Mineral. Petrol. 172, 30 (2017).

    Article  Google Scholar 

  52. McLeod, G. W., Dempster, T. J. & Faithfull, J. W. Deciphering magma-mixing processes using zoned titanite from the Ross of Mull Granite, Scotland. J. Petrol. 52, 55–82 (2011).

    Article  Google Scholar 

  53. Mattinson, J. M. Zircon U–Pb chemical abrasion (‘CA-TIMS’) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).

    Article  Google Scholar 

  54. Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

    Article  Google Scholar 

  55. McLean, N. M., Condon, D. J., Schoene, B. & Bowring, S. A. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Acta 164, 481–501 (2015).

    Article  Google Scholar 

  56. Krogh, T. E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 485–494 (1973).

    Article  Google Scholar 

  57. Chiaradia, M. & Fontboté, L. Separate lead isotope analyses of leachate and residue rock fractions: implications for metal source tracing in ore deposit studies. Miner. Dep. 38, 185–195 (2003).

    Article  Google Scholar 

  58. Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).

    Article  Google Scholar 

  59. Wotzlaw, J. F., Buret, Y., Large, S. J. E., Szymanowski, D. & von Quadt, A. ID-TIMS U–Pb geochronology at the 0.1‰ level using 1013 Ω resistors and simultaneous U and 18O/16O isotope ratio determination for accurate UO2 interference correction. J. Anal. At. Spectrom. 32, 579–586 (2017).

    Article  Google Scholar 

  60. von Quadt, A. et al. High-precision zircon U/Pb geochronology by ID-TIMS using new 1013 ohm resistors. J. Anal. At. Spectrom. 31, 658–665 (2016).

    Article  Google Scholar 

  61. Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012).

    Article  Google Scholar 

  62. Bowring, J. F., McLean, N. M. & Bowring, S. A. Engineering cyber infrastructure for U–Pb geochronology: Tripoli and U–Pb_Redux. Geochem. Geophys. Geosyst. 12, Q0AA19 (2011).

    Article  Google Scholar 

  63. McLean, N. M., Bowring, J. F. & Bowring, S. A. An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. 12, Q0AA18 (2011).

    Article  Google Scholar 

  64. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).

    Article  Google Scholar 

  65. Schmitz, M. D. & Schoene, B. Derivation of isotope ratios, errors, and error correlations for U–Pb geochronology using 205Pb–235U–(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem. Geophys. Geosyst. 8, Q08006 (2007).

    Article  Google Scholar 

  66. Schoene, B. in Treatise on Geochemistry 2nd edn (eds Holland, H. D.& Turekian, K. K.) 341–378 (Elsevier, 2014).

    Book  Google Scholar 

  67. Schärer, U. The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet. Sci. Lett. 67, 191–204 (1984).

    Article  Google Scholar 

  68. Fukuoka, T. & Kigoshi, K. Discordant Io-ages and the uranium and thorium distribution between zircon and host rocks. Geochem. J. 8, 117–122 (1974).

    Article  Google Scholar 

  69. Guillong, M., von Quadt, A., Sakata, S., Peytcheva, I. & Bachmann, O. LA-ICP-MS Pb–U dating of young zircons from the Kos-Nisyros volcanic centre, SE Aegean arc. J. Anal. At. Spectrom. 29, 963–970 (2014).

    Article  Google Scholar 

  70. Bindeman, I. N., Schmitt, A. K. & Valley, J. W. U–Pb zircon geochronology of silicic tuffs from the Timber Mountain/Oasis Valley caldera complex, Nevada: rapid generation of large volume magmas by shallow-level remelting. Contrib. Mineral. Petrol. 152, 649–665 (2006).

    Article  Google Scholar 

  71. Blundy, J. & Wood, B. Mineral-melt partitioning of uranium, thorium and their daughters. Rev. Mineral. Geochem. 52, 59–123 (2003).

    Article  Google Scholar 

  72. Tiepolo, M., Oberti, R. & Vannucci, R. Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem. Geol. 191, 105–119 (2002).

    Article  Google Scholar 

  73. Prowatke, S. & Klemme, S. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim. Cosmochim. Acta 69, 695–709 (2005).

    Article  Google Scholar 

  74. Olin, P. H. & Wolff, J. A. Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid. Lithos 128–131, 46–54 (2012).

    Article  Google Scholar 

  75. Padilla, A. J. & Gualda, G. A. R. Crystal-melt elemental partitioning in silicic magmatic systems: an example from the Peach Spring Tuff high-silica rhyolite, Southwest USA. Chem. Geol. 440, 326–344 (2016).

    Article  Google Scholar 

  76. Barboni, M. & Schoene, B. Short eruption window revealed by absolute crystal growth rates in a granitic magma. Nat. Geosci. 7, 524–528 (2014).

    Article  Google Scholar 

  77. Ickert, R. B., Mundil, R., Magee, C. W. Jr & Mulcahy, S. R. The U–Th–Pb systematics of zircon from the Bishop Tuff: a case study in challenges to high-precision Pb/U geochronology at the millennial scale. Geochim. Cosmochim. Acta 168, 88–110 (2015).

    Article  Google Scholar 

  78. Vervoort, J. D. & Blichert-Toft, J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 63, 533–556 (1999).

    Article  Google Scholar 

  79. Scherer, E., Münker, C. & Mezger, K. Calibration of the lutetium-hafnium clock. Science 293, 683–687 (2001).

    Article  Google Scholar 

  80. Ghiorso, M. S. & Gualda, G. A. R. A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron-titanium oxides. Contrib. Mineral. Petrol. 165, 73–81 (2013).

    Article  Google Scholar 

  81. Blundy, J. & Cashman, K. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contrib. Mineral. Petrol. 140, 631–650 (2001).

    Article  Google Scholar 

  82. Ferriss, E. D., Essene, E. J. & Becker, U. Computational study of the effect of pressure on the Ti-in-zircon geothermometer. Eur. J. Mineral. 20, 745–755 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Swiss National Science Foundation grant 200021_155923. J.F.W. acknowledges support through the ETH Zurich Postdoctoral Fellowship Program. The authors are grateful to J. Sliwinski for FCT and MPT zircon trace element data and Y. Buret for help with Hf isotopic analyses. Special thanks are due to C. Klemp and K. Cook from Freeport-McMoRan Inc. for facilitating access to outcrops near Chino Mine, New Mexico.

Author information

Authors and Affiliations

Authors

Contributions

D.S. and B.S.E. designed the study; D.S., J.F.W. and M.G. performed the analyses; A.v.Q. provided access to laboratory and analytical facilities; D.S., J.F.W., B.S.E. and O.B. co-wrote the manuscript; all authors contributed to interpretation and analysis of the data.

Corresponding author

Correspondence to Dawid Szymanowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szymanowski, D., Wotzlaw, JF., Ellis, B. et al. Protracted near-solidus storage and pre-eruptive rejuvenation of large magma reservoirs. Nature Geosci 10, 777–782 (2017). https://doi.org/10.1038/ngeo3020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing