Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Variability in organic carbon reactivity across lake residence time and trophic gradients

Abstract

The transport of dissolved organic carbon from land to ocean is a large dynamic component of the global carbon cycle. Inland waters are hotspots for organic matter turnover, via both biological and photochemical processes, and mediate carbon transfer between land, oceans and atmosphere. However, predicting dissolved organic carbon reactivity remains problematic. Here we present in situ dissolved organic carbon budget data from 82 predominantly European and North American water bodies with varying nutrient concentrations and water residence times ranging from one week to 700 years. We find that trophic status strongly regulates whether water bodies act as net dissolved organic carbon sources or sinks, and that rates of both dissolved organic carbon production and consumption can be predicted from water residence time. Our results suggest a dominant role of rapid light-driven removal in water bodies with a short water residence time, whereas in water bodies with longer residence times, slower biotic production and consumption processes are dominant and counterbalance one another. Eutrophication caused lakes to transition from sinks to sources of dissolved organic carbon. We conclude that rates and locations of dissolved organic carbon processing and associated CO2 emissions in inland waters may be misrepresented in global carbon budgets if temporal and spatial reactivity gradients are not accounted for.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DOC turnover versus residence time.
Figure 2: DOC input–output balance and trophic status of all waterbodies analysed.
Figure 3: Contrasting relationships between OC processing rates and water residence time obtained from in situ and laboratory incubation data.

Similar content being viewed by others

References

  1. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 465–570 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  2. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

    Article  Google Scholar 

  3. Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).

    Article  Google Scholar 

  4. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    Article  Google Scholar 

  5. Cory, R. M., Ward, C. P., Crump, B. C. & Kling, G. W. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345, 925–928 (2014).

    Article  Google Scholar 

  6. Mineau, M. M. et al. Dissolved organic carbon uptake in streams: a review and assessment of reach-scale measurements. J. Geophys. Res. 121, 2019–2029 (2016).

    Article  Google Scholar 

  7. Benstead, J. P. & Leigh, D. S. An expanded role for river networks. Nat. Geosci. 5, 678–679 (2012).

    Article  Google Scholar 

  8. Downing, J. A. et al. Global abundance and size distribution of streams and rivers. Inland Waters 2, 229–236 (2012).

    Article  Google Scholar 

  9. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  Google Scholar 

  10. Moody, C. S., Worrall, F., Evans, C. D. & Jones, T. G. The rate of loss of dissolved organic carbon (DOC) through a catchment. J. Hydrol. 492, 139–150 (2013).

    Article  Google Scholar 

  11. Molot, L. A., Hudson, J. J., Dillon, P. J. & Miller, S. A. Effect of pH on photo-oxidation of dissolved organic carbon by hydroxyl radicals in a coloured, softwater stream. Aquat. Sci. 67, 189–195 (2005).

    Article  Google Scholar 

  12. Köhler, S. J., Buffam, I., Jonsson, A. & Bishop, K. Photochemical and microbial processing of stream and soilwater dissolved organic matter in a boreal forested catchment in northern Sweden. Aquat. Sci. 64, 269–281 (2002).

    Article  Google Scholar 

  13. Winter, A. R., Fish, T. A., Playle, R. C., Smith, D. S. & Curtis, P. J. Photodegradation of natural organic matter from diverse freshwater sources. Aquat. Toxicol. 84, 215–222 (2007).

    Article  Google Scholar 

  14. Wickland, K. P., Neff, J. C. & Aiken, G. R. Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems 10, 1323–1340 (2007).

    Article  Google Scholar 

  15. del Giorgio, P. A. & Pace, M. L. Relative independence of dissolved organic carbon transport and processing in a large temperate river: the Hudson River as both pipe and reactor. Limnol. Oceanogr. 53, 185–197 (2008).

    Article  Google Scholar 

  16. Catalán, N., Marcé, R., Kothawala, D. N. & Tranvik, L. J. Organic carbon decomposition rates controlled by water retention time across inland waters. Nat. Geosci. 502–504 (2016).

  17. Dillon, P. J. & Molot, L. A. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36, 29–42 (1997).

    Article  Google Scholar 

  18. Weyhenmeyer, G. A. et al. Selective decay of terrestrial organic carbon during transport from land to sea. Glob. Change Biol. 18, 349–355 (2012).

    Article  Google Scholar 

  19. Koehler, B., Landelius, T., Weyhenmeyer, G. A., Machida, N. & Tranvik, L. J. Sunlight-induced carbon dioxide emissions from inland waters. Glob. Biogeochem. Cycles 28, 696–711 (2014).

    Article  Google Scholar 

  20. Obernoster, I. & Benner, R. Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol. Oceanogr. 49, 117–124 (2004).

    Article  Google Scholar 

  21. Fairchild, G. W. & Velinsky, D. J. Effects of small ponds on stream water chemistry. Lake Reserv. Manage. 22, 321–330 (2006).

    Article  Google Scholar 

  22. Taylor, P. G. & Townsend, A. R. Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature 464, 1178–1181 (2010).

    Article  Google Scholar 

  23. Jansson, M., Karlsson, J. & Jonsson, A. Carbon dioxide supersaturation promotes primary production in lakes. Ecol. Lett. 15, 527–532 (2012).

    Article  Google Scholar 

  24. Moran, M. A. & Zepp, R. G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr. 42, 1307–1316 (1997).

    Article  Google Scholar 

  25. Aitkenhead, J. A. & McDowell, W. H. Soil C:N as a predictor of annual riverine DOC flux at local and global scales. Glob. Biogeochem. Cycles 14, 127–138 (2000).

    Article  Google Scholar 

  26. Köhler, S. J., Kothawala, D., Futter, M. N., Liungman, O. & Tranvik, L. In-lake processes offset increased terrestrial inputs of dissolved organic carbon and color to lakes. PLoS ONE 8, e70598 (2013).

    Article  Google Scholar 

  27. Xenopoulos, M. A. et al. Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes Region and selected regions globally. Limnol. Oceanogr. 48, 2321–2334 (2003).

    Article  Google Scholar 

  28. Kelly, C. A. et al. Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnol. Oceanogr. 46, 1054–1064 (2001).

    Article  Google Scholar 

  29. Downing, J. A. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29, 9–24 (2010).

    Google Scholar 

  30. Creed, I. F. et al. The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. Can. J. Fish. Aquat. Sci. 72, 1272–1285 (2015).

    Article  Google Scholar 

  31. Carpenter, J. W., Green, R. H. & Paterson, C. G. A preliminary organic carbon budget for a small dystrophic lake in Maritime Canada. Hydrobiologia 106, 275–282 (1983).

    Article  Google Scholar 

  32. Cremona, F. et al. Dynamic carbon budget of a large shallow lake assessed by a mass balance approach. Hydrobiologia 731, 109–123 (2014).

    Article  Google Scholar 

  33. Sobek, S., Söderbäck, B., Karlsson, S., Andersson, E. & Brunberg, A. K. A carbon budget of a small humic lake: an example of the importance of lakes for organic matter cycling in boreal catchments. Ambio 35, 469–475 (2006).

    Article  Google Scholar 

  34. Einola, E. et al. Carbon pools and fluxes in a chain of five boreal lakes: a dry and wet year comparison. J. Geophys. Res. 116, G03009 (2011).

    Article  Google Scholar 

  35. Wetzel, R. G., Rich, P. H., Miller, M. C. & Allen, H. L. Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. Mem. Inst. Ital. Idrobiol. 29, 185–243 (1972).

    Google Scholar 

  36. Stets, E. G., Striegl, R. G., Aiken, G. R., Rosenberry, D. O. & Winter, T. C. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J. Geophys. Res. 114, G01008 (2009).

    Article  Google Scholar 

  37. Curtis, P. J. & Schindler, D. W. Hydrologic control of dissolved organic matter in low-order Precambrian Shield lakes. Biogeochemistry 36, 125–138 (1997).

    Article  Google Scholar 

  38. Persson, G. & Broberg, O. Nutrient concentrations in the acidified Lake Gårdsjon: the role of transport and retention of phosphorus, nitrogen and DOC in watershed and lake. Ecol. Bull. 37, 158–175 (1985).

    Google Scholar 

  39. Hanson, P. C. et al. Fate of allochthonous dissolved organic carbon in lakes: a quantitative approach. PLoS ONE 6, e21884 (2011).

    Article  Google Scholar 

  40. Hanson, P. C., Buffam, I., Rusak, J. A., Stanley, E. H. & Watras, C. Quantifying lake allochthonous organic carbon budgets using a simple equilibrium model. Limnol. Oceanogr. 59, 167–181 (2014).

    Article  Google Scholar 

  41. Weissenberger, S. et al. Modeling the carbon dynamics of the La Grande hydroelectric complex in northern Quebec. Ecol. Model. 221, 610–620 (2010).

    Article  Google Scholar 

  42. Cole, J. J., Caraco, N. F., Strayer, D. L., Ochs, C. & Nolan, S. A detailed organic carbon budget as an ecosystem-scale calibration of bacterial respiration in an oligotrophic lake during midsummer. Limnol. Oceanogr. 34, 286–296 (1989).

    Article  Google Scholar 

  43. Åberg, J., Bergström, A. K., Algesten, G., Söderback, K. & Jansson, M. A comparison of the carbon balances of a natural lake (L. Örträsket) and a hydroelectric reservoir (L. Skinnmuddselet) in northern Sweden. Water Res. 38, 531–538 (2004).

    Article  Google Scholar 

  44. Garnier, J., Leporcq, B., Sanchez, N. & Philippon, X. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry 47, 119–146 (1999).

    Google Scholar 

  45. Parks, S. J. & Baker, L. A. Sources and transport of organic carbon in an Arizona river-reservoir system. Water Res. 31, 1751–1759 (1997).

    Article  Google Scholar 

  46. Pearson, K. Mathematical contributions to the theory of evolution—on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1897).

    Article  Google Scholar 

  47. Dodds, W. K. Eutrophication and trophic state in rivers and streams. Limnol. Oceanogr. 51, 671–680 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was undertaken with support received by C.D.E. as King Carl XVI Gustaf’s 20th Visiting Professor in Environmental Science at the Swedish University of Agricultural Sciences, and from the UK Natural Environment Research Council Macronutrients Cycles Programme Grant no. NE/J011533/1. M.N.F. acknowledges the Nordforsk DOMQUA project (60501). We would like to thank D. Edopka, A. Räike, L. May and Scottish Water for providing data included in the analysis.

Author information

Authors and Affiliations

Authors

Contributions

C.D.E. conceived the study, undertook the initial data analysis and led the writing of the paper. M.N.F. and D.N.K. contributed to conceptual development and data analysis and wrote sections of the manuscript. F.M., Z.F. and S.V. provided unpublished data, expert knowledge and ideas, and commented on the text.

Corresponding author

Correspondence to Chris D. Evans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 648 kb)

Supplementary Information

Supplementary Information (XLSX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, C., Futter, M., Moldan, F. et al. Variability in organic carbon reactivity across lake residence time and trophic gradients. Nature Geosci 10, 832–835 (2017). https://doi.org/10.1038/ngeo3051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing