Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning

Abstract

The ocean’s global overturning circulation regulates the transport and storage of heat, carbon and nutrients. Upwelling across the Southern Ocean’s Antarctic Circumpolar Current and into the mixed layer, coupled to water mass modification by surface buoyancy forcing, has been highlighted as a key process in the closure of the overturning circulation1,2. Here, using twelve high-resolution hydrographic sections in southern Drake Passage, collected with autonomous ocean gliders, we show that Circumpolar Deep Water originating from the North Atlantic, known as Lower Circumpolar Deep Water, intersects sloping topography in narrow and strong boundary currents. Observations of strong lateral buoyancy gradients, enhanced bottom turbulence, thick bottom mixed layers and modified water masses are consistent with growing evidence that topographically generated submesoscale flows over continental slopes enhance near-bottom mixing3,4, and that cross-density upwelling occurs preferentially over sloping topography5,6. Interactions between narrow frontal currents and topography occur elsewhere along the path of the Antarctic Circumpolar Current, which leads us to propose that such interactions contribute significantly to the closure of the overturning in the Southern Ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the ChinStrAP (Changes in Stratification at the Antarctic Peninsula) field programme.
Figure 2: Stratification and flow characteristics from a typical glider section (transect 5 in Fig. 1).
Figure 3: Bottom mixed layer (BML) properties over continental shelf and slope.
Figure 4: Water mass transformation over the continental slope and schematics of the upper overturning closure in the Southern Ocean.

Similar content being viewed by others

References

  1. Marshall, J. & Radko, T. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr. 33, 2341–2354 (2003).

    Article  Google Scholar 

  2. Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

  3. Molemaker, M. J., McWilliams, J. C. & Dewar, W. K. Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr. 45, 613–629 (2015).

    Article  Google Scholar 

  4. Gula, J., Molemaker, J. & McWilliams, J. C. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun. 7, 12811 (2016).

    Article  Google Scholar 

  5. De Lavergne, C., Madec, G., Le Sommer, J., Nurser, A. G. & Naveira Garabato, A. C. On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr. 46, 635–661 (2016).

    Article  Google Scholar 

  6. Ferrari, R., Mashayek, A., McDougall, T. J., Nikurashin, M. & Campin, J.-M. Turning ocean mixing upside down. J. Phys. Oceanogr. 46, 2239–2261 (2016).

    Article  Google Scholar 

  7. Speer, K., Rintoul, S. R. & Sloyan, B. The diabatic Deacon cell. J. Phys. Oceanogr. 30, 3212–3222 (2000).

    Article  Google Scholar 

  8. Sloyan, B. & Rintoul, S. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr. 31, 143–173 (2001).

    Article  Google Scholar 

  9. Munk, W. H. Abyssal recipes. Deep-Sea Res. 13, 707–730 (1966).

    Google Scholar 

  10. Wolfe, C. L. & Cessi, P. The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr. 41, 1795–1810 (2011).

    Article  Google Scholar 

  11. Naveira Garabato, A. C., Williams, A. P. & Bacon, S. The three-dimensional overturning circulation of the Southern Ocean during the WOCE era. Prog. Oceanogr. 120, 41–78 (2014).

    Article  Google Scholar 

  12. Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013).

    Article  Google Scholar 

  13. Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Article  Google Scholar 

  14. Orsi, A. H. & Whitworth III, T. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE): Volume 1: Southern Ocean (WOCE International Project Office, 2005).

    Google Scholar 

  15. Naveira Garabato, A. C., Stevens, D. P., Watson, A. J. & Roether, W. Short-circuiting of the overturning circulation in the Antarctic Circumoplar Current. Nature 447, 194–197 (2007).

    Article  Google Scholar 

  16. Silvester, J. M., Lenn, Y.-D., Polton, J. A., Rippeth, T. P. & Maqueda, M. M. Observations of a diapycnal shortcut to adiabatic upwelling of Antarctic Circumpolar Deep Water. Geophys. Res. Lett. 41, 7950–7956 (2014).

    Article  Google Scholar 

  17. Orsi, A. H., Smethie, W. M. & Bullister, J. L. On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. 107, 31-1–31-14 (2002).

    Article  Google Scholar 

  18. Armi, L. Some evidence for boundary mixing in the deep ocean. J. Geophys. Res. 83, 1971–1979 (1978).

    Article  Google Scholar 

  19. Polzin, K. L., Garabato, A., Abrahamsen, E. P., Jullion, L. & Meredith, M. P. Boundary mixing in Orkney passage outflow. J. Geophys. Res. 119, 8627–8645 (2014).

    Article  Google Scholar 

  20. Orsi, A. H., Whitworth III, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. 42, 641–673 (1995).

    Article  Google Scholar 

  21. Gill, A. E. Circulation and bottom water production in the Weddell Sea. Deep-Sea Res. 20, 111–140 (1973).

    Google Scholar 

  22. Thomas, L. N., Taylor, J. R., Ferrari, R. & Joyce, T. M. Symmetric instability in the Gulf Stream. Deep-Sea Res. II 91, 96–110 (2013).

    Article  Google Scholar 

  23. Lozovatsky, I., Fernando, H. & Shapovalov, S. Deep-ocean mixing on the basin scale: inference from North Atlantic transects. Deep-Sea Res. I 55, 1075–1089 (2008).

    Article  Google Scholar 

  24. Todd, R. E. High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream. Geophys. Res. Lett. 44, 6316–6325 (2017).

    Article  Google Scholar 

  25. Phillips, O. M., Shyu, J.-H. & Salmun, H. An experiment on boundary mixing: mean circulation and transport rates. J. Fluid Mech. 173, 473–499 (1986).

    Article  Google Scholar 

  26. Garrett, C., MacCready, P. & Rhines, P. Boundary mixing and arrested Ekman layers: rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech. 25, 291–323 (1993).

    Article  Google Scholar 

  27. Flexas, M. M., Schodlok, M., Padman, L., Menemenlis, D. & Orsi, A. Role of tides on the formation of the Antarctic Slope Front at the Weddell–Scotia Confluence. J. Geophys. Res. 120, 3658–3680 (2015).

    Article  Google Scholar 

  28. Rosso, I., Hogg, A. M., Kiss, A. E. & Gayen, B. Topographic influence on submesoscale dynamics in the Southern Ocean. Geophys. Res. Lett. 42, 1139–1147 (2015).

    Article  Google Scholar 

  29. Thompson, A. F., Stewart, A. L. & Bischoff, T. A multi-basin residual-mean model for the global overturning circulation. J. Phys. Oceanogr. 46, 2583–2604 (2016).

    Article  Google Scholar 

  30. Tamsitt, V. et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun. 8, 172 (2017).

    Article  Google Scholar 

  31. Thorpe, S. A. The Turbulent Ocean (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

Download references

Acknowledgements

X.R., A.F.T. and M.M.F. received support from NSF grant OPP-1246460. J.S. received support from NSF grant OPP-1246160. A.F.T. also received support from the David and Lucille Packard Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.F.T. and J.S. conceived and designed the field programme; X.R., A.F.T. and J.S. collected the data; X.R., A.F.T. and M.M.F. analysed the data; X.R., A.F.T., M.M.F. and J.S. co-wrote the paper.

Corresponding author

Correspondence to Xiaozhou Ruan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2568 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, X., Thompson, A., Flexas, M. et al. Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning. Nature Geosci 10, 840–845 (2017). https://doi.org/10.1038/ngeo3053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing