Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clonal evolution in leukemia

Abstract

Human leukemias are liquid malignancies characterized by diffuse infiltration of the bone marrow by transformed hematopoietic progenitors. The accessibility of tumor cells obtained from peripheral blood or through bone marrow aspirates, together with recent advances in cancer genomics and single-cell molecular analysis, have facilitated the study of clonal populations and their genetic and epigenetic evolution over time with unprecedented detail. The results of these analyses challenge the classic view of leukemia as a clonal homogeneous diffuse tumor and introduce a more complex and dynamic scenario. In this review, we present current concepts on the role of clonal evolution in lymphoid and myeloid leukemia as a driver of tumor initiation, disease progression and relapse. We also discuss the implications of these concepts in our understanding of the evolutionary mechanisms involved in leukemia transformation and therapy resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different modes of clonal evolution in leukemias.
Figure 2: Clonal hematopoiesis in aging, bone marrow failure syndromes and therapy-related leukemias.
Figure 3: Contribution of epigenetics to clonal evolution in leukemia.
Figure 4: Clinical implications of the clonal evolution of leukemia.

Similar content being viewed by others

References

  1. Nowell, P.C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Merlo, L.M., Pepper, J.W., Reid, B.J. & Maley, C.C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Burrell, R.A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Greaves, M. Evolutionary determinants of cancer. Cancer Discov. 5, 806–820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puente, X.S. & López-Otín, C. The evolutionary biography of chronic lymphocytic leukemia. Nat. Genet. 45, 229–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Landau, D.A., Carter, S.L., Getz, G. & Wu, C.J. Clonal evolution in hematological malignancies and therapeutic implications. Leukemia 28, 34–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Greaves, M. Leukaemia 'firsts' in cancer research and treatment. Nat. Rev. Cancer 16, 163–172 (2016).

    Article  PubMed  CAS  Google Scholar 

  8. Dick, J.E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Jan, M. & Majeti, R. Clonal evolution of acute leukemia genomes. Oncogene 32, 135–140 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Song, W.J. et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet. 23, 166–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Smith, M.L., Cavenagh, J.D., Lister, T.A. & Fitzgibbon, J. Mutation of CEBPA in familial acute myeloid leukemia. N. Engl. J. Med. 351, 2403–2407 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Hahn, C.N. et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 43, 1012–1017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Noris, P. et al. ANKRD26-related thrombocytopenia and myeloid malignancies. Blood 122, 1987–1989 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Polprasert, C. et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell 27, 658–670 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shah, S. et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat. Genet. 45, 1226–1231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, M.Y. et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat. Genet. 47, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moriyama, T. et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol. 16, 1659–1666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greaves, M.F., Maia, A.T., Wiemels, J.L. & Ford, A.M. Leukemia in twins: lessons in natural history. Blood 102, 2321–2333 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Sanjuan-Pla, A. et al. Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia. Blood 126, 2676–2685 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hong, D. et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319, 336–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Greaves, M. Infection, immune responses and the aetiology of childhood leukaemia. Nat. Rev. Cancer 6, 193–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs, K.B. et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat. Genet. 44, 651–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laurie, C.C. et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat. Genet. 44, 642–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Li, A.H., Rosenquist, R., Forestier, E., Lindh, J. & Roos, G. Detailed clonality analysis of relapsing precursor B acute lymphoblastic leukemia: implications for minimal residual disease detection. Leuk. Res. 25, 1033–1045 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. de Haas, V. et al. Quantification of minimal residual disease in children with oligoclonal B-precursor acute lymphoblastic leukemia indicates that the clones that grow out during relapse already have the slowest rate of reduction during induction therapy. Leukemia 15, 134–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Notta, F. et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 469, 362–367 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jan, M. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med. 4, 149ra118 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Paguirigan, A.L. et al. Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia. Sci. Transl. Med. 7, 281re2 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Puente, X.S. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526, 519–524 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Landau, D.A. et al. Mutations driving CLL and their evolution in progression and relapse. Nature 526, 525–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Makishima, H. et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat. Genet. 49, 204–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Mossner, M. et al. Mutational hierarchies in myelodysplastic syndromes dynamically adapt and evolve upon therapy response and failure. Blood 128, 1246–1259 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Miyamoto, T., Weissman, I.L. & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl. Acad. Sci. USA 97, 7521–7526 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shlush, L.I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Damm, F. et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 4, 1088–1101 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Kikushige, Y. et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 20, 246–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Chung, S.S. et al. Hematopoietic stem cell origin of BRAFV600E mutations in hairy cell leukemia. Sci. Transl. Med. 6, 238ra71 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sperling, A.S., Gibson, C.J. & Ebert, B.L. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat. Rev. Cancer 17, 5–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Walter, M.J. et al. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med. 366, 1090–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Green, M.R. et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc. Natl. Acad. Sci. USA 112, E1116–E1125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Corces-Zimmerman, M.R., Hong, W.J., Weissman, I.L., Medeiros, B.C. & Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc. Natl. Acad. Sci. USA 111, 2548–2553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Horiike, S. et al. Distinct genetic involvement of the TP53 gene in therapy-related leukemia and myelodysplasia with chromosomal losses of Nos 5 and/or 7 and its possible relationship to replication error phenotype. Leukemia 13, 1235–1242 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Side, L.E. et al. RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosom. Cancer 39, 217–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Wong, T.N. et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518, 552–555 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi, K. et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 18, 100–111 (2017).

    Article  PubMed  Google Scholar 

  53. Gibson, C.J. et al. Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J. Clin. Oncol. 35, 1598–1605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Young, N.S., Calado, R.T. & Scheinberg, P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 108, 2509–2519 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Socié, G., Rosenfeld, S., Frickhofen, N., Gluckman, E. & Tichelli, A. Late clonal diseases of treated aplastic anemia. Semin. Hematol. 37, 91–101 (2000).

    Article  PubMed  Google Scholar 

  56. Yoshizato, T. et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N. Engl. J. Med. 373, 35–47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Maciejewski, J.P., Risitano, A., Sloand, E.M., Nunez, O. & Young, N.S. Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood 99, 3129–3135 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Dumitriu, B. et al. Telomere attrition and candidate gene mutations preceding monosomy 7 in aplastic anemia. Blood 125, 706–709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Katagiri, T. et al. Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia. Blood 118, 6601–6609 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Afable, M.G. II et al. SNP array-based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes. Blood 117, 6876–6884 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hillmen, P., Lewis, S.M., Bessler, M., Luzzatto, L. & Dacie, J.V. Natural history of paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 333, 1253–1258 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Ogawa, S. Clonal hematopoiesis in acquired aplastic anemia. Blood 128, 337–347 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Quentin, S. et al. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 117, e161–e170 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Horwitz, M., Benson, K.F., Person, R.E., Aprikyan, A.G. & Dale, D.C. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat. Genet. 23, 433–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Klein, C. et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat. Genet. 39, 86–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Devriendt, K. et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat. Genet. 27, 313–317 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Bonilla, M.A. et al. Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis. N. Engl. J. Med. 320, 1574–1580 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Rosenberg, P.S. et al. Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br. J. Haematol. 150, 196–199 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Germeshausen, M., Ballmaier, M. & Welte, K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: Results of a long-term survey. Blood 109, 93–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Skokowa, J. et al. Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood 123, 2229–2237 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Papaemmanuil, E. et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616–3627, quiz 3699 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ortmann, C.A. et al. Effect of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 372, 601–612 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Cortés, J.R. & Palomero, T. The curious origins of angioimmunoblastic T-cell lymphoma. Curr. Opin. Hematol. 23, 434–443 (2016).

    Article  PubMed  CAS  Google Scholar 

  74. Shaknovich, R., De, S. & Michor, F. Epigenetic diversity in hematopoietic neoplasms. Biochim. Biophys. Acta 1846, 477–484 (2014).

    CAS  PubMed  Google Scholar 

  75. Guièze, R. & Wu, C.J. Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia. Blood 126, 445–453 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Li, S., Mason, C.E. & Melnick, A. Genetic and epigenetic heterogeneity in acute myeloid leukemia. Curr. Opin. Genet. Dev. 36, 100–106 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kulis, M. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44, 1236–1242 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Figueroa, M.E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17, 13–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Milani, L. et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood 115, 1214–1225 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Geng, H. et al. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov. 2, 1004–1023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, S. et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat. Med. 22, 792–799 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pan, H. et al. Epigenomic evolution in diffuse large B-cell lymphomas. Nat. Commun. 6, 6921 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Sandoval, J. et al. Genome-wide DNA methylation profiling predicts relapse in childhood B-cell acute lymphoblastic leukaemia. Br. J. Haematol. 160, 406–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Landau, D.A. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26, 813–825 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oakes, C.C. et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat. Genet. 48, 253–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Heller, G. et al. Next-generation sequencing identifies major DNA methylation changes during progression of Ph+ chronic myeloid leukemia. Leukemia 30, 1861–1868 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Feinberg, A.P., Koldobskiy, M.A. & Göndör, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17, 284–299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Greenblatt, S.M. & Nimer, S.D. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia 28, 1396–1406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roberts, K.G. & Mullighan, C.G. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat. Rev. Clin. Oncol. 12, 344–357 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Woods, B.A. & Levine, R.L. The role of mutations in epigenetic regulators in myeloid malignancies. Immunol. Rev. 263, 22–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Shen, H. & Laird, P.W. Interplay between the cancer genome and epigenome. Cell 153, 38–55 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Oakes, C.C. et al. Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia. Cancer Discov. 4, 348–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Amabile, G. et al. Dissecting the role of aberrant DNA methylation in human leukaemia. Nat. Commun. 6, 7091 (2015).

    Article  PubMed  Google Scholar 

  94. Shih, A.H. et al. Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia. Cancer Cell 27, 502–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, X. et al. DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells. Nat. Genet. 48, 1014–1023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pasqualucci, L. et al. Expression of the AID protein in normal and neoplastic B cells. Blood 104, 3318–3325 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Gorre, M.E. & Sawyers, C.L. Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Curr. Opin. Hematol. 9, 303–307 (2002).

    Article  PubMed  Google Scholar 

  98. Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100, 1014–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Branford, S., Melo, J.V. & Hughes, T.P. Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCR-ABL mutation status really matter? Blood 114, 5426–5435 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Cortes, J. et al. Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors. Blood 110, 4005–4011 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Woyach, J.A. et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 370, 2286–2294 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Liu, T.M. et al. Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation. Blood 126, 61–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Burger, J.A. et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat. Commun. 7, 11589 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ahn, I.E. et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 129, 1469–1479 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Smith, C.C. et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 485, 260–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Goto, E. et al. Missense mutations in PML-RARA are critical for the lack of responsiveness to arsenic trioxide treatment. Blood 118, 1600–1609 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Maus, M.V., Grupp, S.A., Porter, D.L. & June, C.H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 123, 2625–2635 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Davila, M.L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lee, D.W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Maude, S.L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Restifo, N.P., Smyth, M.J. & Snyder, A. Acquired resistance to immunotherapy and future challenges. Nat. Rev. Cancer 16, 121–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chung, E.Y. et al. CD19 is a major B cell receptor-independent activator of MYC-driven B-lymphomagenesis. J. Clin. Invest. 122, 2257–2266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jacoby, E. et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat. Commun. 7, 12320 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gardner, R. et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127, 2406–2410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rayes, A., McMasters, R.L. & O'Brien, M.M. Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy. Pediatr. Blood Cancer 63, 1113–1115 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Armstrong, S.A. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30, 41–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Evans, A.G. et al. Evolution to plasmablastic lymphoma evades CD19-directed chimeric antigen receptor T cells. Br. J. Haematol. 171, 205–209 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Mullighan, C.G. et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322, 1377–1380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bardini, M. et al. Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement. Leukemia 29, 38–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Oshima, K. et al. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 113, 11306–11311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mullighan, C.G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ma, X. et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat. Commun. 6, 6604 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Meyer, J.A. et al. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat. Genet. 45, 290–294 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tzoneva, G. et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat. Med. 19, 368–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, B. et al. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat. Med. 21, 563–571 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ariës, I.M. et al. Towards personalized therapy in pediatric acute lymphoblastic leukemia: RAS mutations and prednisolone resistance. Haematologica 100, e132–e136 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jones, C.L. et al. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood 126, 2202–2212 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Estey, E., Keating, M.J., Pierce, S. & Stass, S. Change in karyotype between diagnosis and first relapse in acute myelogenous leukemia. Leukemia 9, 972–976 (1995).

    CAS  PubMed  Google Scholar 

  130. Raghavan, M. et al. Segmental uniparental disomy is a commonly acquired genetic event in relapsed acute myeloid leukemia. Blood 112, 814–821 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Parkin, B. et al. Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia. Blood 121, 369–377 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sood, R. et al. Somatic mutational landscape of AML with inv(16) or t(8;21) identifies patterns of clonal evolution in relapse leukemia. Leukemia 30, 501–504 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Krönke, J. et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood 122, 100–108 (2013).

    Article  PubMed  CAS  Google Scholar 

  134. Nadeu, F. et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 127, 2122–2130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pui, C.H. et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol. 16, 465–474 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kim, J.Y. & Gatenby, R.A. Quantitative clinical imaging methods for monitoring intratumoral evolution. Methods Mol. Biol. 1513, 61–81 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Batlevi, C.L., Matsuki, E., Brentjens, R.J. & Younes, A. Novel immunotherapies in lymphoid malignancies. Nat. Rev. Clin. Oncol. 13, 25–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Notta, F. et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351, aab2116 (2016).

    Article  PubMed  CAS  Google Scholar 

  139. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Busque, L. et al. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood 88, 59–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Kwok, B. et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood 126, 2355–2361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Young, A.L., Challen, G.A., Birmann, B.M. & Druley, T.E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Mittelbrunn (CBM-Hospital 12 de Octubre, Madrid, Spain), X.S. Puente (Universidad de Oviedo, Oviedo, Spain), P. Menéndez (J. Carreras Leukemia Research Institute, Barcelona, Spain), R. Rabadán (Columbia University, New York, New York, USA), J. Soulier (Université Paris Diderot, Paris, France) and all members of our labs for their helpful comments on the manuscript. A.A.F. is supported by grants from the National Cancer Institute (NCI) of the National Institutes of Health (NIH), the Leukemia & Lymphoma Society, the Chemotherapy Foundation and the Rally Foundation. C.L.-O. is supported by grants from European Union (DeAge, ERC-Advanced Grant), Ministerio de Economía y Competitividad SAF2014-52413-R, Instituto de Salud Carlos III (RTICC), CIBERONC, Plan Feder, and EDP Foundation. The generous support by J.I. Cabrera is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adolfo A Ferrando or Carlos López-Otín.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrando, A., López-Otín, C. Clonal evolution in leukemia. Nat Med 23, 1135–1145 (2017). https://doi.org/10.1038/nm.4410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4410

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer