Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An ALOX12–12-HETE–GPR31 signaling axis is a key mediator of hepatic ischemia–reperfusion injury

Abstract

Hepatic ischemia–reperfusion (IR) injury is a common clinical issue lacking effective therapy and validated pharmacological targets. Here, using integrative 'omics' analysis, we identified an arachidonate 12-lipoxygenase (ALOX12)–12-hydroxyeicosatetraenoic acid (12-HETE)–G-protein-coupled receptor 31 (GPR31) signaling axis as a key determinant of the hepatic IR process. We found that ALOX12 was markedly upregulated in hepatocytes during ischemia to promote 12-HETE accumulation and that 12-HETE then directly binds to GPR31, triggering an inflammatory response that exacerbates liver damage. Notably, blocking 12-HETE production inhibits IR-induced liver dysfunction, inflammation and cell death in mice and pigs. Furthermore, we established a nonhuman primate hepatic IR model that closely recapitulates clinical liver dysfunction following liver resection. Most strikingly, blocking 12-HETE accumulation effectively attenuated all pathologies of hepatic IR in this model. Collectively, this study has revealed previously uncharacterized metabolic reprogramming involving an ALOX12–12-HETE–GPR31 axis that functionally determines hepatic IR procession. We have also provided proof of concept that blocking 12-HETE production is a promising strategy for preventing and treating IR-induced liver damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ALOX12 is dramatically upregulated during hepatic IR injury.
Figure 2: ALOX12 directly promotes 12-HETE accumulation in hepatic IR injury.
Figure 3: Alox12 knockout inhibits IR-induced liver dysfunction, cell death and inflammation.
Figure 4: 12-HETE promotes hepatic IR injury by inducing a burst of inflammation.
Figure 5: GPR31 is responsible for 12-HETE-mediated hepatic IR injury.
Figure 6: ML355 inhibits liver damage in a monkey hepatic IR model.

Similar content being viewed by others

Accession codes

Primary accessions

Proteomics Identifications Database

Sequence Read Archive

References

  1. Zhai, Y., Petrowsky, H., Hong, J.C., Busuttil, R.W. & Kupiec-Weglinski, J.W. Ischaemia–reperfusion injury in liver transplantation—from bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 10, 79–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Vollmar, B. & Menger, M.D. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol. Rev. 89, 1269–1339 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Uchida, Y. et al. T-cell immunoglobulin mucin-3 determines severity of liver ischemia/reperfusion injury in mice in a TLR4-dependent manner. Gastroenterology 139, 2195–2206 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, J.H. et al. Autophagy suppresses age-dependent ischemia and reperfusion injury in livers of mice. Gastroenterology 141, 2188–2199 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Clavien, P.A. et al. A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann. Surg. 238, 843–850, discussion 851–852 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eltzschig, H.K. & Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Zhai, Y., Busuttil, R.W. & Kupiec-Weglinski, J.W. Liver ischemia and reperfusion injury: new insights into mechanisms of innate-adaptive immune-mediated tissue inflammation. Am. J. Transplant. 11, 1563–1569 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peralta, C., Jiménez-Castro, M.B. & Gracia-Sancho, J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J. Hepatol. 59, 1094–1106 (2013).

    Article  PubMed  Google Scholar 

  9. Mashima, R. & Okuyama, T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol. 6, 297–310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tourdot, B.E. & Holinstat, M. Targeting 12-lipoxygenase as a potential novel antiplatelet therapy. Trends Pharmacol. Sci. 38, 1006–1015 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Powell, W.S. & Rokach, J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim. Biophys. Acta 1851, 340–355 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Un, K. et al. Efficient suppression of murine intracellular adhesion molecule-1 using ultrasound-responsive and mannose-modified lipoplexes inhibits acute hepatic inflammation. Hepatology 56, 259–269 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Moles, A. et al. A TLR2/S100A9/CXCL-2 signaling network is necessary for neutrophil recruitment in acute and chronic liver injury in the mouse. J. Hepatol. 60, 782–791 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang, K. et al. Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner. Mol. Cancer 14, 111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Porro, B., Songia, P., Squellerio, I., Tremoli, E. & Cavalca, V. Analysis, physiological and clinical significance of 12-HETE: a neglected platelet-derived 12-lipoxygenase product. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 964, 26–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, E.N., Brass, L.F. & Funk, C.D. Increased platelet sensitivity to ADP in mice lacking platelet-type 12-lipoxygenase. Proc. Natl. Acad. Sci. USA 95, 3100–3105 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luci, D.K. et al. Synthesis and structure–activity relationship studies of 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide derivatives as potent and selective inhibitors of 12-lipoxygenase. J. Med. Chem. 57, 495–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Husted, A.S., Trauelsen, M., Rudenko, O., Hjorth, S.A. & Schwartz, T.W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Milligan, G., Alvarez-Curto, E., Hudson, B.D., Prihandoko, R. & Tobin, A.B. FFA4/GPR120: pharmacology and therapeutic opportunities. Trends Pharmacol. Sci. 38, 809–821 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, J. et al. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat. Struct. Mol. Biol. 24, 570–577 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Im, D.S. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol. Aspects Med. S0098-2997(17)30064-X (2017).

  22. Guo, Y. et al. Identification of the orphan G protein–coupled receptor GPR31 as a receptor for 12-(S)-hydroxyeicosatetraenoic acid. J. Biol. Chem. 286, 33832–33840 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garcia, V. et al. 20-HETE signals through G-protein-coupled receptor GPR75 (Gq) to affect vascular function and trigger hypertension. Circ. Res. 120, 1776–1788 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luci, D. et al. Discovery of ML355, a potent and selective inhibitor of human 12-lipoxygenase. in Probe Reports from the NIH Molecular Libraries Program (National Institutes of Health, 2010).

  25. Gregus, A.M. et al. Systematic analysis of rat 12/15-lipoxygenase enzymes reveals critical role for spinal eLOX3 hepoxilin synthase activity in inflammatory hyperalgesia. FASEB J. 27, 1939–1949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cooper, D.K., Gollackner, B. & Sachs, D.H. Will the pig solve the transplantation backlog? Annu. Rev. Med. 53, 133–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Robertson, F.P., Fuller, B.J. & Davidson, B.R. An evaluation of ischaemic preconditioning as a method of reducing ischaemia reperfusion injury in liver surgery and transplantation. J. Clin. Med. 6, E69 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Brenner, C., Galluzzi, L., Kepp, O. & Kroemer, G. Decoding cell death signals in liver inflammation. J. Hepatol. 59, 583–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Ju, C., Colgan, S.P. & Eltzschig, H.K. Hypoxia-inducible factors as molecular targets for liver diseases. J. Mol. Med. (Berl.) 94, 613–627 (2016).

    Article  CAS  Google Scholar 

  30. van Golen, R.F., van Gulik, T.M. & Heger, M. The sterile immune response during hepatic ischemia/reperfusion. Cytokine Growth Factor Rev. 23, 69–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Datta, G., Fuller, B.J. & Davidson, B.R. Molecular mechanisms of liver ischemia reperfusion injury: insights from transgenic knockout models. World J. Gastroenterol. 19, 1683–1698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Selzner, N., Rudiger, H., Graf, R. & Clavien, P.A. Protective strategies against ischemic injury of the liver. Gastroenterology 125, 917–936 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Corcoran, S.E. & O'Neill, L.A. HIF1α and metabolic reprogramming in inflammation. J. Clin. Invest. 126, 3699–3707 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shimano, H. & Sato, R. SREBP-regulated lipid metabolism: convergent physiology— divergent pathophysiology. Nat. Rev. Endocrinol. http://dx.doi.org/10.1038/nrendo.2017.91 (2017).

  35. Chouchani, E.T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fehrenbacher, N. et al. The G protein–coupled receptor GPR31 promotes membrane association of KRAS. J. Cell Biol. 216, 2329–2338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Honn, K.V. et al. 12-HETER1/GPR31, a high-affinity 12(S)-hydroxyeicosatetraenoic acid receptor, is significantly up-regulated in prostate cancer and plays a critical role in prostate cancer progression. FASEB J. 30, 2360–2369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, Q., Lenardo, M.J. & Baltimore, D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168, 37–57 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. King, L.A., Toledo, A.H., Rivera-Chavez, F.A. & Toledo-Pereyra, L.H. Role of p38 and JNK in liver ischemia and reperfusion. J. Hepatobiliary Pancreat. Surg. 16, 763–770 (2009).

    Article  PubMed  Google Scholar 

  40. Stevens, R.C. et al. The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nat. Rev. Drug Discov. 12, 25–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Wacker, D., Stevens, R.C. & Roth, B.L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rask-Andersen, M., Almén, M.S. & Schiöth, H.B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Strasser, A., Wittmann, H.J. & Seifert, R. Binding kinetics and pathways of ligands to GPCRs. Trends Pharmacol. Sci. 38, 717–732 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Xiang, J. et al. Successful strategies to determine high-resolution structures of GPCRs. Trends Pharmacol. Sci. 37, 1055–1069 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, D., Langmead, B. & Salzberg, S.L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, X. et al. Dusp14 protects against hepatic ischemia–reperfusion injury via Tak1 suppression. J. Hepatol. S0168-8278(17)32275-4 (2017).

  52. Hu, J. et al. Targeting TRAF3 signaling protects against hepatic ischemia/reperfusions injury. J. Hepatol. 64, 146–159 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Sun, P. et al. Mindin deficiency protects the liver against ischemia/reperfusion injury. J. Hepatol. 63, 1198–1211 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Li, L. et al. Attenuation of cerebral ischemic injury in interferon regulatory factor 3 deficient rat. J. Neurochem. http://dx.doi.org/10.1111/jnc.13448 (2015).

  55. Martin-Venegas, R., Jáuregui, O. & Moreno, J.J. Liquid chromatography–tandem mass spectrometry analysis of eicosanoids and related compounds in cell models. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 964, 41–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Masoodi, M., Eiden, M., Koulman, A., Spaner, D. & Volmer, D.A. Comprehensive lipidomics analysis of bioactive lipids in complex regulatory networks. Anal. Chem. 82, 8176–8185 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Zhu, Q.F. et al. Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high–performance liquid chromatography/mass spectrometry. J. Chromatogr. A 1410, 154–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, P.X. et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat. Med. 23, 439–449 (2017).

    CAS  PubMed  Google Scholar 

  59. Zhao, G.N. et al. Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4. Nat. Med. 23, 742–752 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Jiang, X. et al. Tumor necrosis factor receptor–associated factor 3 is a positive regulator of pathological cardiac hypertrophy. Hypertension 66, 356–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Ji, Y.X. et al. The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling. Nat. Commun. 7, 11267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bao, M.W. et al. Cardioprotective role of growth/differentiation factor 1 in post-infarction left ventricular remodelling and dysfunction. J. Pathol. 236, 360–372 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Guo, S. et al. Oncostatin M confers neuroprotection against ischemic stroke. J. Neurosci. 35, 12047–12062 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shanghai Metabolome Institute–Wuhan for their help in examining AA metabolites in the liver, serum and cell lysates. This work was supported by grants from the National Science Fund for Distinguished Young Scholars (no. 81425005; H.L.), the Key Project of the National Natural Science Foundation (no. 81330005 and 81630011; H.L.), the National Science and Technology Support Project (no. 2014BAI02B01 and 2015BAI08B01; H.L.), the National Key Research and Development Program (no. 2013YQ030923-05 (H.L.) and 2016YFF0101504 (Z.-G.S.)), the National Natural Science Foundation of China (no. 81770053; Z.-G.S.) and the Key Collaborative Project of the National Natural Science Foundation (no. 91639304; H.L. and Z.-G.S.).

Author information

Authors and Affiliations

Authors

Contributions

X.-J.Z., X.C., Z.-Z.Y. and J.F. designed and performed the experiments, analyzed the data and wrote the manuscript; X.W. performed animal experiments, analyzed data and edited the manuscript; W.W. and Z.-Y.L. performed biological experiments and analyzed data; L.-J.S. analyzed data and organized figures; P.Z., P.-X.W. and Y.-X.J. performed omics analyses and provided important advice for this study; R.L. performed perfusion CT experiments; J.-Y.W. performed ultra-high-performance liquid chromatography–mass spectrometry experiments; S.T. established the animal hepatic IR models; X.-Y.Z. performed western blot experiments; Y.Z. performed staining experiments; R.-F.T. assisted in the performance of pig and monkey surgeries; L.W. collected clinical human liver and serum samples; X.-L.M., Z.H. and Z.-G.S. helped design the project and edited the manuscript; and H.L. designed experiments, wrote the manuscript and supervised the study.

Corresponding author

Correspondence to Hongliang Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–22 & Supplementary Tables 1–6 (PDF 7699 kb)

Life Sciences Reporting Summary

Life Sciences Reporting Summary (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XJ., Cheng, X., Yan, ZZ. et al. An ALOX12–12-HETE–GPR31 signaling axis is a key mediator of hepatic ischemia–reperfusion injury. Nat Med 24, 73–83 (2018). https://doi.org/10.1038/nm.4451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing