Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway

Abstract

The stress-responsive epigenetic repressor histone deacetylase 4 (HDAC4) regulates cardiac gene expression. Here we show that the levels of an N-terminal proteolytically derived fragment of HDAC4, termed HDAC4-NT, are lower in failing mouse hearts than in healthy control hearts. Virus-mediated transfer of the portion of the Hdac4 gene encoding HDAC4-NT into the mouse myocardium protected the heart from remodeling and failure; this was associated with decreased expression of Nr4a1, which encodes a nuclear orphan receptor, and decreased NR4A1-dependent activation of the hexosamine biosynthetic pathway (HBP). Conversely, exercise enhanced HDAC4-NT levels, and mice with a cardiomyocyte-specific deletion of Hdac4 show reduced exercise capacity, which was characterized by cardiac fatigue and increased expression of Nr4a1. Mechanistically, we found that NR4A1 negatively regulated contractile function in a manner that depended on the HBP and the calcium sensor STIM1. Our work describes a new regulatory axis in which epigenetic regulation of a metabolic pathway affects calcium handling. Activation of this axis during intermittent physiological stress promotes cardiac function, whereas its impairment in sustained pathological cardiac stress leads to heart failure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HDAC4-NT gene therapy is cardioprotective.
Figure 2: Identification of an HDAC4-NT–MEF2–Nr4a1–GFPT2 axis.
Figure 3: HDAC4-deficient mice show cardiac fatigue.
Figure 4: HBP regulates store-operated calcium entry (SOCE).
Figure 5: Nr4a1 expression regulates cardiac contractility via SOCE.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Sequence Read Archive

References

  1. Maillet, M., van Berlo, J.H. & Molkentin, J.D. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat. Rev. Mol. Cell Biol. 14, 38–48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lehmann, L.H., Worst, B.C., Stanmore, D.A. & Backs, J. Histone deacetylase signaling in cardioprotection. Cell. Mol. Life Sci. 71, 1673–1690 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Backs, J., Song, K., Bezprozvannaya, S., Chang, S. & Olson, E.N. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J. Clin. Invest. 116, 1853–1864 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kreusser, M.M. et al. The cardiac CaMKII genes δ and γ contribute redundantly to adverse remodeling but inhibit calcineurin-induced myocardial hypertrophy. Circulation 130, 1262–1273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fischer, T. et al. CaMKII and PKA differentially regulate SR Ca2+ leak in human cardiac pathology. Circulation 128, 970–981 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, W. et al. Sustained β1-adrenergic stimulation modulates cardiac contractility by Ca2+–calmodulin kinase signaling pathway. Circ. Res. 95, 798–806 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Backs, J. et al. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J. Cell Biol. 195, 403–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu, J., McKinsey, T.A., Nicol, R.L. & Olson, E.N. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl. Acad. Sci. USA 97, 4070–4075 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McKinsey, T.A., Zhang, C.L. & Olson, E.N. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell. Biol. 21, 6312–6321 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ago, T. et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133, 978–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Weeks, K.L. & Avkiran, M. Roles and posttranslational regulation of cardiac class IIa histone deacetylase isoforms. J. Physiol. (Lond.) 593, 1785–1797 (2015).

    Article  CAS  Google Scholar 

  12. Haworth, R.S., Stathopoulou, K., Candasamy, A.J. & Avkiran, M. Neurohormonal regulation of cardiac histone deacetylase 5 nuclear localization by phosphorylation-dependent and phosphorylation-independent mechanisms. Circ. Res. 110, 1585–1595 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Werfel, S. et al. Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovasc. Res. 104, 15–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, Y. et al. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J. Clin. Invest. 118, 124–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Vega, R.B. et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119, 555–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Pearen, M.A. & Muscat, G.E. Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol. Endocrinol. 24, 1891–1903 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, Y. & Bruemmer, D. NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler. Thromb. Vasc. Biol. 30, 1535–1541 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zachara, N., Akimoto, Y. & Hart, G.W. in Essentials of Glycobiology (eds. Varki, A. et al.) (Cold Spring Harbor Laboratory Press, 2015).

  19. Lee, S.O. et al. Diindolylmethane analogs bind NR4A1 and are NR4A1 antagonists in colon cancer cells. Mol. Endocrinol. 28, 1729–1739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng, Z. et al. Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. Eur. Heart J. 32, 2179–2188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Erickson, J.R. et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502, 372–376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu-Mauldin, X., Marsh, S.A., Zou, L., Marchase, R.B. & Chatham, J.C. Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes. J. Biol. Chem. 287, 39094–39106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Antos, C.L. et al. Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ. Res. 89, 997–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Marx, S.O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Houser, S.R. Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A–mediated hyperphosphorylation of the ryanodine receptor at serine 2,808 does not alter cardiac contractility or cause heart failure and arrhythmias. Circ. Res. 114, 1320–1327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Backs, J. et al. The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc. Natl. Acad. Sci. USA 106, 2342–2347 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ling, H. et al. Requirement for Ca2+–calmodulin-dependent kinase II in the transition from pressure-overload-induced cardiac hypertrophy to heart failure in mice. J. Clin. Invest. 119, 1230–1240 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Skålhegg, B.S. et al. Mutation of the Cα subunit of PKA leads to growth retardation and sperm dysfunction. Mol. Endocrinol. 16, 630–639 (2002).

    PubMed  Google Scholar 

  29. Anand, P. et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154, 569–582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lam, B.Y. et al. CREB-dependent Nur77 induction following depolarization in PC12 cells and neurons is modulated by MEF2 transcription factors. J. Neurochem. 112, 1065–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, R.H. et al. The orphan receptor TR3 participates in angiotensin II–induced cardiac hypertrophy by controlling mTOR signaling. EMBO Mol. Med. 5, 137–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Medzikovic, L. et al. Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodeling. Sci. Rep. 5, 15404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chatham, J.C. & Young, M.E. Metabolic remodeling in the hypertrophic heart: fuel for thought. Circ. Res. 111, 666–668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Watson, L.J. et al. O-linked β-N-acetylglucosamine transferase is indispensable in the failing heart. Proc. Natl. Acad. Sci. USA 107, 17797–17802 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, Z.V. et al. Spliced X-box-binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156, 1179–1192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Champattanachai, V., Marchase, R.B. & Chatham, J.C. Glucosamine protects neonatal cardiomyocytes from ischemia–reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2. Am. J. Physiol. Cell Physiol. 294, C1509–C1520 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, J., Marchase, R.B. & Chatham, J.C. Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis. Am. J. Physiol. Heart Circ. Physiol. 293, H1391–H1399 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Young, M.E. et al. Proposed regulation of gene expression by glucose in rodent heart. Gene Regul. Syst. Bio. 1, 251–262 (2007).

    PubMed  PubMed Central  Google Scholar 

  39. Hu, Y. et al. Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ. Res. 96, 1006–1013 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Dassanayaka, S. et al. Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy. Basic Res. Cardiol. 112, 23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nickel, A., Löffler, J. & Maack, C. Myocardial energetics in heart failure. Basic Res. Cardiol. 108, 358 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Nagy, T., Champattanachai, V., Marchase, R.B. & Chatham, J.C. Glucosamine inhibits angiotensin II–induced cytoplasmic Ca2+ elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylglucosamine. Am. J. Physiol. Cell Physiol. 290, C57–C65 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Pang, Y., Hunton, D.L., Bounelis, P. & Marchase, R.B. Hyperglycemia inhibits capacitative calcium entry and hypertrophy in neonatal cardiomyocytes. Diabetes 51, 3461–3467 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Parekh, A.B. & Putney, J.W. Jr. Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Hulot, J.S. et al. Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation 124, 796–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo, X. et al. STIM1-dependent store-operated Ca2+ entry is required for pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 52, 136–147 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Voelkers, M. et al. Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J. Mol. Cell. Cardiol. 48, 1329–1334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Correll, R.N. et al. STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy. J. Mol. Cell. Cardiol. 87, 38–47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bénard, L. et al. Cardiac Stim1 silencing impairs adaptive hypertrophy and promotes heart failure through inactivation of mTORC2–Akt signaling. Circulation 133, 1458–1471, discussion 1471 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Collins, H.E. et al. Stromal interaction molecule 1 is essential for normal cardiac homeostasis through modulation of ER and mitochondrial function. Am. J. Physiol. Heart Circ. Physiol. 306, H1231–H1239 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stiber, J. et al. STIM1 signaling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat. Cell Biol. 10, 688–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wei-Lapierre, L., Carrell, E.M., Boncompagni, S., Protasi, F. & Dirksen, R.T. Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat. Commun. 4, 2805 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Zhao, X. et al. Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol. Genomics 23, 72–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Troupes, C.D. et al. Role of STIM1 in hypertrophy-related contractile dysfunction. Circ. Res. 121, 125–136 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao, G., Li, T., Brochet, D.X., Rosenberg, P.B. & Lederer, W.J. STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes. Proc. Natl. Acad. Sci. USA 112, E4792–E4801 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Douglas, P.S., O'Toole, M.L., Hiller, W.D., Hackney, K. & Reichek, N. Cardiac fatigue after prolonged exercise. Circulation 76, 1206–1213 (1987).

    Article  CAS  PubMed  Google Scholar 

  57. Trivax, J.E. & McCullough, P.A. Phidippides cardiomyopathy: a review and case illustration. Clin. Cardiol. 35, 69–73 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Paur, H. et al. High levels of circulating epinephrine trigger apical cardiodepression in a β2-adrenergic receptor–Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation 126, 697–706 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Templin, C., Napp, L.C. & Ghadri, J.R. Takotsubo syndrome: underdiagnosed, underestimated but understood? J. Am. Coll. Cardiol. 67, 1937–1940 (2016).

    Article  PubMed  Google Scholar 

  60. Agah, R. et al. Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J. Clin. Invest. 100, 169–179 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oh-Hora, M. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 9, 432–443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takefuji, M. et al. G13-mediated signaling pathway is required for pressure-overload-induced cardiac remodeling and heart failure. Circulation 126, 1972–1982 (2012).

    Article  PubMed  Google Scholar 

  63. National Research Council. Guide for the Care and Use of Laboratory Animals 8th edn. (The National Academies Press, 2011).

  64. Rossi, D.J. et al. Inability to enter S phase and defective RNA polymerase II CTD phosphorylation in mice lacking Mat1. EMBO J. 20, 2844–2856 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Müller, O.J., Schinkel, S., Kleinschmidt, J.A., Katus, H.A. & Bekeredjian, R. Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats. Gene Ther. 15, 1558–1565 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Hill, J.A. et al. Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation 101, 2863–2869 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Park, J.Y. et al. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ. Res. 105, 705–712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song, K. et al. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 125, 453–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Schneider, A. et al. Successful prenatal mannose treatment for congenital disorder of glycosylation Ia in mice. Nat. Med. 18, 71–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Black, B.L., Martin, J.F. & Olson, E.N. The mouse MRF4 promoter is trans-activated directly and indirectly by muscle-specific transcription factors. J. Biol. Chem. 270, 2889–2892 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Zimmermann, W.H. et al. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng. 68, 106–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Mela, L. & Seitz, S. Isolation of mitochondria with emphasis on heart mitochondria from small amounts of tissue. Methods Enzymol. 55, 39–46 (1979).

    Article  CAS  PubMed  Google Scholar 

  73. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  74. Li, Y. et al. Identification of a novel serine phosphorylation site in human glutamine:fructose-6-phosphate amidotransferase isoform 1. Biochemistry 46, 13163–13169 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Bonn, S. et al. Cell-type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nat. Protoc. 7, 978–994 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chauhan, J.S., Rao, A. & Raghava, G.P. In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One 8, e67008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mi, H., Muruganujan, A., Casagrande, J.T. & Thomas, P.D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Oestringer, S. Harrack and X. Qi for technical help and M. Hagenmüller for organizational help. We thank Pineda antibody service (Berlin) for production of the HDAC4-NT-specific antibody. We thank M. Sussman for providing the NR4A1-expressing adenovirus, J. Hill for providing the Stim1-D76A adenovirus and E.N. Olson for the MEF2A, MEF2C and MEF2D expression constructs. We additionally thank M.D. Schneider for providing the Myh6–Cre transgenic mice, M. Ohora (Tokyo Medical and Dental University) for providing the Stim1- and Stim2-floxed mice, and S. Offermanns (Max-Planck Institute for Heart and Lung Research, Bad Nauheim) for providing the αMHC-CreER(T2) mice. We thank U. Haberkorn and W. Mier for synthesis of DIM-C-p-PhOH. J.B. was supported by grants from the Deutsche Forschungsgemeinschaft (BA 2258/2-1 and SFB 1118), the European Commission (FP7-Health-2010 and MEDIA-261409) and the Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK; German Centre for Cardiovascular Research) and by the BMBF (German Ministry of Education and Research). L.H.L. is recipient of the Heidelberg Research Center for Molecular Medicine (HRCMM) Career Development Fellowship. S.H. received grant support from the Deutsche Forschungsgemeinschaft (He3260/8-1, He3260/7-1 and SFB1118), and the Helmholtz Cross-Program Topic Metabolic Dysfunction. M.F. received grant support from the Deutsche Forschungsgemeinschaft (SFB1118 and TR-SFB 152), the DZHK and the BMBF. C.M. is supported by the DFG (Heisenberg Programm and SFB-894). M.W. and A.E.-A. are supported by the Deutsche Forschungsgemeinschaft (EL 270/7-1 (A.E.-A.) and WA 2586/4-1 (M.W.)). J.B. is in particular grateful to E.N. Olson who contributed to the inception of this work and to the Olson lab, where J.B. continued the generation of the conditional Hdac4 KO mice; work that was started by Junyoung Oh. This work is also dedicated to the memory of Junyoung Oh.

Author information

Authors and Affiliations

Authors

Contributions

J.B., L.H.L. and Z.H.J. designed the study; L.H.L., Z.H.J., M.M.K., A.H., T.H., M. Kronlage, C.S., V.S., U.O., J.K.-H., J.R., D.F., A.N., M.S., A.S., Q.S., A.J., M.V., M.W., S.W.S. and J.B. performed experiments; L.H.L., Z.H.J., M.M.K., M.D., A.H.v.d.L., A.H., C.T., A.N., M. Kohlhaas, N.G., J.E.C.L., B.M., M.F., C.M., H.-J.G., S.H. and J.B. analyzed and interpreted data; L.H.L., V.S. and E.E.M.F. designed, executed and analyzed the ChIP experiments; H.A.K., E.E.M.F., M.F., M.W., A.E.-A., L.S.M., O.J.M., P.M., S.H. and J.B. provided research support and conceptual advice; L.H.L. and J.B. wrote the paper; and E.E.M.F., N.G., C.M. and H.A.K. revised the paper.

Corresponding author

Correspondence to Johannes Backs.

Ethics declarations

Competing interests

L.H.L., Z.H.J., H.A.K. and J.B. have filed a patent on HDAC4-NT gene therapy.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, L., Jebessa, Z., Kreusser, M. et al. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat Med 24, 62–72 (2018). https://doi.org/10.1038/nm.4452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing