Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A histone deacetylase 3–dependent pathway delimits peripheral myelin growth and functional regeneration

Abstract

Deficits in Schwann cell–mediated remyelination impair functional restoration after nerve damage, contributing to peripheral neuropathies. The mechanisms mediating block of remyelination remain elusive. Here, through small-molecule screening focusing on epigenetic modulators, we identified histone deacetylase 3 (HDAC3; a histone-modifying enzyme) as a potent inhibitor of peripheral myelinogenesis. Inhibition of HDAC3 enhanced myelin growth and regeneration and improved functional recovery after peripheral nerve injury in mice. HDAC3 antagonizes the myelinogenic neuregulin–PI3K–AKT signaling axis. Moreover, genome-wide profiling analyses revealed that HDAC3 represses promyelinating programs through epigenetic silencing while coordinating with p300 histone acetyltransferase to activate myelination-inhibitory programs that include the HIPPO signaling effector TEAD4 to inhibit myelin growth. Schwann cell–specific deletion of either Hdac3 or Tead4 in mice resulted in an elevation of myelin thickness in sciatic nerves. Thus, our findings identify the HDAC3–TEAD4 network as a dual-function switch of cell-intrinsic inhibitory machinery that counters myelinogenic signals and maintains peripheral myelin homeostasis, highlighting the therapeutic potential of transient HDAC3 inhibition for improving peripheral myelin repair.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Small-molecule epigenetics compound library screen for inhibitors of SC myelination.
Figure 2: Treatment with an HDAC3 inhibitor enhances SC remyelination and functional recovery after sciatic nerve transection.
Figure 3: Hdac3 ablation leads to hypermyelination during peripheral nerve development.
Figure 4: Ablation of Hdac3 promotes remyelination after nerve injury.
Figure 5: Activation of the PI3K–AKT pathway promotes myelination in the sciatic nerves of Hdac3-mutant mice.
Figure 6: HDAC3 inhibits myelinogenesis by activating the inhibitory factor TEAD4.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Suter, U. & Scherer, S.S. Disease mechanisms in inherited neuropathies. Nat. Rev. Neurosci. 4, 714–726 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Scherer, S.S. & Wrabetz, L. Molecular mechanisms of inherited demyelinating neuropathies. Glia 56, 1578–1589 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nave, K.A., Sereda, M.W. & Ehrenreich, H. Mechanisms of disease: inherited demyelinating neuropathies—from basic to clinical research. Nat. Clin. Pract. Neurol. 3, 453–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Zhou, Y. & Notterpek, L. Promoting peripheral myelin repair. Exp. Neurol. 283 (Pt. B), 573–580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, Z.L., Yu, W.M. & Strickland, S. Peripheral regeneration. Annu. Rev. Neurosci. 30, 209–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Nave, K.A. & Werner, H.B. Myelination of the nervous system: mechanisms and functions. Annu. Rev. Cell Dev. Biol. 30, 503–533 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Salzer, J.L. Schwann cell myelination. Cold Spring Harb. Perspect. Biol. 7, a020529 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Monk, K.R., Feltri, M.L. & Taveggia, C. New insights on Schwann cell development. Glia 63, 1376–1393 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Feltri, M.L., Poitelon, Y. & Previtali, S.C. How Schwann cells sort axons: new concepts. Neuroscientist 22, 252–265 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Stolt, C.C. & Wegner, M. Schwann cells and their transcriptional network: evolution of key regulators of peripheral myelination. Brain Res. 1641, 101–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Jessen, K.R., Mirsky, R. & Lloyd, A.C. Schwann cells: development and role in nerve repair. Cold Spring Harb. Perspect. Biol. 7, a020487 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wu, L.M. et al. Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination. Nat. Neurosci. 19, 1060–1072 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Quintes, S. et al. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nat. Neurosci. 19, 1050–1059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poitelon, Y. et al. YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat. Neurosci. 19, 879–887 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng, Y. et al. A reciprocal regulatory loop between TAZ/YAP and G-protein Gαs regulates Schwann cell proliferation and myelination. Nat. Commun. 8, 15161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grove, M. et al. YAP/TAZ initiate and maintain Schwann cell myelination. eLife 6, e20982 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arthur-Farraj, P.J. et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75, 633–647 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Emery, B. & Lu, Q.R. Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harb. Perspect. Biol. 7, a020461 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Pereira, J.A., Lebrun-Julien, F. & Suter, U. Molecular mechanisms regulating myelination in the peripheral nervous system. Trends Neurosci. 35, 123–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Ma, K.H. & Svaren, J. Epigenomic reprogramming in peripheral nerve injury. Neural Regen. Res. 11, 1930–1931 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Malvaez, M. et al. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc. Natl. Acad. Sci. USA 110, 2647–2652 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang, Y. & Hsieh, J. HDAC3 controls gap 2/mitosis progression in adult neural stem/progenitor cells by regulating CDK1 levels. Proc. Natl. Acad. Sci. USA 111, 13541–13546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacob, C. et al. HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat. Neurosci. 14, 429–436 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y. et al. HDAC-mediated deacetylation of NF-κB is critical for Schwann cell myelination. Nat. Neurosci. 14, 437–441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bei, F. et al. Restoration of visual function by enhancing conduction in regenerated axons. Cell 164, 219–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rai, M. et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS One 3, e1958 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jia, H. et al. The effects of pharmacological inhibition of histone deacetylase 3 (HDAC3) in Huntington's disease mice. PLoS One 11, e0152498 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Parrinello, S. et al. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 143, 145–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Painter, M.W. et al. Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. Neuron 83, 331–343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Watkins, T.A., Emery, B., Mulinyawe, S. & Barres, B.A. Distinct stages of myelination regulated by γ-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60, 555–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Montgomery, R.L. et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Invest. 118, 3588–3597 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 33, 366–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Jaegle, M. et al. The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes Dev. 17, 1380–1391 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doerflinger, N.H., Macklin, W.B. & Popko, B. Inducible site-specific recombination in myelinating cells. Genesis 35, 63–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Michailov, G.V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Sheean, M.E. et al. Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination. Genes Dev. 28, 290–303 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cotter, L. et al. Dlg1–PTEN interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science 328, 1415–1418 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Norrmén, C. & Suter, U. Akt/mTOR signalling in myelination. Biochem. Soc. Trans. 41, 944–950 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Okumura, K. et al. PCAF modulates PTEN activity. J. Biol. Chem. 281, 26562–26568 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Erjala, K. et al. Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin. Cancer Res. 12, 4103–4111 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhang, L. et al. Hdac3 interaction with p300 histone acetyltransferase regulates the oligodendrocyte and astrocyte lineage fate switch. Dev. Cell 36, 316–330 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Creyghton, M.P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yagi, R. et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Lundborg, G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J. Hand Surg. Am. 25, 391–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Brosius Lutz, A. & Barres, B.A. Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev. Cell 28, 7–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Cattin, A.L. et al. Macrophage-induced blood vessels guide Schwann cell–mediated regeneration of peripheral nerves. Cell 162, 1127–1139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kang, H. & Lichtman, J.W. Motor axon regeneration and muscle reinnervation in young adult and aged animals. J. Neurosci. 33, 19480–19491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suzuki, M. Peripheral neuropathy in the elderly. Handb. Clin. Neurol. 115, 803–813 (2013).

    Article  PubMed  Google Scholar 

  51. Cho, Y., Sloutsky, R., Naegle, K.M. & Cavalli, V. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155, 894–908 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brügger, V. et al. Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration. Nat. Commun. 8, 14272 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Haberland, M., Montgomery, R.L. & Olson, E.N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sadoul, K., Boyault, C., Pabion, M. & Khochbin, S. Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie 90, 306–312 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Noseda, R. et al. DDIT4/REDD1/RTP801 is a novel negative regulator of Schwann cell myelination. J. Neurosci. 33, 15295–15305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang, L.L., Liu, Z.Y., Huang, J.H. & Luo, Z.J. Expression pattern of neuregulin-1 type III during the development of the peripheral nervous system. Neural Regen. Res. 10, 65–70 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fernando, R.N. et al. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway. Nat. Commun. 7, 12186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koontz, L.M. et al. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev. Cell 25, 388–401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mottamal, M., Zheng, S., Huang, T.L. & Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20, 3898–3941 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6, a026831 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Wegner, J. Wells, and E. Hurlock for critical reading of the manuscript. We are grateful to E. Olson (University of Texas Southwestern Medical Center), D. Meijer (University of Edinburgh), and M. Wegner (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)) for Hdac3-floxed mice, Dhh-Cre mice, and antibodies against EGR2 and KROX20, respectively, and to N. Wu and L. Xu for technical support. This study was funded in part by the US National Institutes of Health (NIH; grant no. R37NS096359 and R01NS075243 to Q.R.L.; R35NS097303 to B.D.T.; and R01AR064551-01A1 to M.P.J.) and the National Multiple Sclerosis Society (grant no. NMSS-RG1507 to Q.R.L.).

Author information

Authors and Affiliations

Authors

Contributions

X.H., L.Z., and Q.R.L. designed the experiments, analyzed the data, and wrote the manuscript with input from all authors. L.F.Q. and M.P.J. carried out CMAP analysis. X.H., L.Z., X.L., A.L., G.K., and X.D. performed the in vitro, in vivo, gene profiling, ChIP–seq, and in silico analyses. R.R.W., W.Z., S.-O.Y., J.B.R., M.X., K.-A.N., and B.D.T. provided resources and inputs. A.B. and K.N. provided floxed Tead4 and Cnp-Cre animals, respectively. Q.R.L. supervised the project.

Corresponding author

Correspondence to Q Richard Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1–27 (PDF 3467 kb)

Life Sciences Reporting Summary (PDF 258 kb)

Supplementary Table 1

Transcription Factor loci with chromatin co-occupancy of HDAC3 and p300 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, L., Queme, L. et al. A histone deacetylase 3–dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med 24, 338–351 (2018). https://doi.org/10.1038/nm.4483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4483

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing