Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers

Abstract

Genomic analyses of cancer have identified recurrent point mutations in the RNA splicing factor–encoding genes SF3B1, U2AF1, and SRSF2 that confer an alteration of function1,2,3,4,5,6. Cancer cells bearing these mutations are preferentially dependent on wild-type (WT) spliceosome function7,8,9,10,11, but clinically relevant means to therapeutically target the spliceosome do not currently exist. Here we describe an orally available modulator of the SF3b complex, H3B-8800, which potently and preferentially kills spliceosome-mutant epithelial and hematologic tumor cells. These killing effects of H3B-8800 are due to its direct interaction with the SF3b complex, as evidenced by loss of H3B-8800 activity in drug-resistant cells bearing mutations in genes encoding SF3b components. Although H3B-8800 modulates WT and mutant spliceosome activity, the preferential killing of spliceosome-mutant cells is due to retention of short, GC-rich introns, which are enriched for genes encoding spliceosome components. These data demonstrate the therapeutic potential of splicing modulation in spliceosome-mutant cancers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H3B-8800 modulates splicing of WT and mutant SF3B1 spliceosomes in vitro and preferentially kills SF3B1-mutant cells.
Figure 2: H3B-8800 modulates splicing and selectively kills SF3B1-mutant leukemia cells in vivo.
Figure 3: H3B-8800 demonstrates preferential activity on SRSF2-mutant leukemia in PDX mice.
Figure 4: H3B-8800 inhibits splicing of short, GC-rich introns and affects splicing of mRNAs encoding spliceosome components.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harbour, J.W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat. Genet. 45, 133–135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163, 506–519 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, Q. et al. A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res. 75, 1949–1958 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Fei, D.L. et al. Wild-Type U2AF1 antagonizes the splicing program characteristic of U2AF1-mutant tumors and is required for cell survival. PLoS Genet. 12, e1006384 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Obeng, E.A. et al. Physiologic expression of Sf3b1(K700E) causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell 30, 404–417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shirai, C.L. et al. Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat. Commun. 8, 14060 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, S.C. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat. Med. 22, 672–678 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, Y. & Rio, D.C. Mechanisms and regulation of alternative pre-mRNA splicing. Annu. Rev. Biochem. 84, 291–323 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen, T.H. et al. CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast. Curr. Opin. Struct. Biol. 36, 48–57 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ilagan, J.O. et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 25, 14–26 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Darman, R.B. et al. Cancer-Associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Alsafadi, S. et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat. Commun. 7, 10615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, J. et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc. Natl. Acad. Sci. USA 112, E4726–E4734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kotake, Y. et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat. Chem. Biol. 3, 570–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Teng, T. et al. Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex. Nat. Commun. 8, 15522 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cretu, C. et al. Molecular Architecture of SF3b and structural consequences of its cancer-related mutations. Mol. Cell 64, 307–319 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Folco, E.G., Coil, K.E. & Reed, R. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev. 25, 440–444 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amit, M. et al. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Rep. 1, 543–556 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Jenkins, J.L., Agrawal, A.A., Gupta, A., Green, M.R. & Kielkopf, C.L. U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs. Nucleic Acids Res. 41, 3859–3873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mercer, T.R. et al. Genome-wide discovery of human splicing branchpoints. Genome Res. 25, 290–303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Corrionero, A., Miñana, B. & Valcárcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cvitkovic, I. & Jurica, M.S. Spliceosome database: a tool for tracking components of the spliceosome. Nucleic Acids Res. 41, D132–D141 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Hegele, A. et al. Dynamic protein–protein interaction wiring of the human spliceosome. Mol. Cell 45, 567–580 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Barbosa-Morais, N.L., Carmo-Fonseca, M. & Aparício, S. Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion. Genome Res. 16, 66–77 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pellizzoni, L., Kataoka, N., Charroux, B. & Dreyfuss, G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95, 615–624 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Luo, M.J. & Reed, R. Splicing is required for rapid and efficient mRNA export in metazoans. Proc. Natl. Acad. Sci. USA 96, 14937–14942 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoshimi, A. et al. Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML. Blood 130, 397–407 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng, D.T. et al. Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Bray, N.L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Computing in Science and Engineering 9, 90–95 (2007).

    Article  Google Scholar 

  39. Sgouropoulos, N., Yao, Q. & Yastremiz, C. Matching a Distribution by Matching Quantiles Estimation. J. Am. Stat. Assoc. 110, 742–759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Croft, D. et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 42, D472–D477 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Thomas, P.D. et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 31, 334–341 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H3 Biomedicine employees for their support in this project. A.Y. was supported by grants from the Aplastic Anemia and Myelodysplastic Syndromes (MDS) International Foundation and the Lauri Strauss Leukemia Foundation. O.A.-W. was supported by grants from the Edward P. Evans Foundation, the Taub Foundation, the Department of Defense Bone Marrow Failure Research Program (BM150092 and W81XWH-12-1-0041), National Institutes of Health National Heart, Lung and Blood Institute (R01 HL128239), the Josie Robertson Investigator Program, an award from the Starr Foundation (I8-A8-075), the Leukemia and Lymphoma Society (2314-17) and the Pershing Square Sohn Cancer Research Alliance.

Author information

Authors and Affiliations

Authors

Contributions

G.K., S. Prajapati, J.W., and X.L guided and performed the medicinal chemistry efforts that led to identification of H3B-8800. E. Park, A.A.A., B.C., and P.F. performed the in vitro biochemical assays. A.Y., A.C., B.C., R.D., C.K., L.L., P.K., C. Mackenzie, Y.M., T.T., H.Y., P.Z., P.G.S., and S.B. performed experiments and analyses of H3B-8800 performance in in vitro cellular assays. M.T., E.S., G.L., E. Pazolli, C. Meeske, P.G.S., M.W., and S.B. performed studies and analyzed data from the cell line xenografts. V.K. and E. Padron provided patient materials used for PDX models. A.Y., S.C-W.L., J.T., and O.A.-W. generated PDX models and performed PDX experiments and analyses. M.S., S. Peng, and L.Y. performed RNA-seq analyses. O.A.-W., M.S., A.A.A., P.G.S., and S.B. wrote the manuscript.

Corresponding author

Correspondence to Silvia Buonamici.

Ethics declarations

Competing interests

M.T., B.C., M.S., A.A.A., B. Chan, B. Caleb, A.C., R.D., P.F., C.K., G.K., L.L., P.K., X.L., C. Mackenzie, C. Meeske, Y.M., E. Park, S. Peng, S. Prajapati, T.T., J.W., M.W., H.Y., L.Y., P.Z., P.G.S. and S.B. are employees of H3 Biomedicine, Inc., and E.S. and G.L. are employees of Eisai, Inc.

Supplementary information

Supplementary Figures & Tables

Supplementary Figures 1–14 & Supplementary Tables 1–7 (PDF 7932 kb)

Life Sciences Reporting Summary (PDF 191 kb)

Supplementary Table

Supplementary Table 3 (XLS 8185 kb)

Supplementary Table

Supplementary Table 4 (XLS 3276 kb)

Supplementary Table

Supplementary Table 5 (XLS 7 kb)

Supplementary Table

Supplementary Table 6 (XLS 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seiler, M., Yoshimi, A., Darman, R. et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med 24, 497–504 (2018). https://doi.org/10.1038/nm.4493

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4493

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer