Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein

Abstract

Immunization with attenuated Plasmodium falciparum sporozoites (PfSPZs) has been shown to be protective against malaria, but the features of the antibody response induced by this treatment remain unclear. To investigate this response in detail, we isolated IgM and IgG monoclonal antibodies from Tanzanian volunteers who were immunized with repeated injection of Sanaria PfSPZ Vaccine and who were found to be protected from controlled human malaria infection with infectious homologous PfSPZs. All isolated IgG monoclonal antibodies bound to P. falciparum circumsporozoite protein (PfCSP) and recognized distinct epitopes in its N terminus, NANP-repeat region, and C terminus. Strikingly, the most effective antibodies, as determined in a humanized mouse model, bound not only to the repeat region, but also to a minimal peptide at the PfCSP N-terminal junction that is not in the RTS,S vaccine. These dual-specific antibodies were isolated from different donors and were encoded by VH3-30 or VH3-33 alleles that encode tryptophan or arginine at position 52. Using structural and mutational data, we describe the elements required for germline recognition and affinity maturation. Our study provides potent neutralizing antibodies and relevant information for lineage-targeted vaccine design and immunization strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunization with PfSPZ Vaccine induces robust antibody responses in malaria-exposed individuals.
Figure 2: Highly neutralizing antibodies are encoded by VH3-30f genes and exhibit dual specificity for NANP repeats and the N-terminus junction.
Figure 3: Somatic mutations increase antibody affinity for PfCSP and lead to the acquisition of dual specificity.
Figure 4: Structural basis for recognition of an N-terminal junctional peptide by MGG4.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. World Health Organization. World malaria report 2016. (World Health Organization, 2017).

  2. Hoffman, S.L. et al. Naturally acquired antibodies to sporozoites do not prevent malaria: vaccine development implications. Science 237, 639–642 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Tran, T.M. et al. An intensive longitudinal cohort study of Malian children and adults reveals no evidence of acquired immunity to Plasmodium falciparum infection. Clin. Infect. Dis. 57, 40–47 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Casares, S., Brumeanu, T.-D. & Richie, T.L. The RTS,S malaria vaccine. Vaccine 28, 4880–4894 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Dups, J.N., Pepper, M. & Cockburn, I.A. Antibody and B cell responses to Plasmodium sporozoites. Front. Microbiol. 5, 625 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ishizuka, A.S. et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat. Med. 22, 614–623 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Cerami, C. et al. The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell 70, 1021–1033 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Frevert, U. et al. Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. J. Exp. Med. 177, 1287–1298 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Coppi, A., Pinzon-Ortiz, C., Hutter, C. & Sinnis, P. The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. J. Exp. Med. 201, 27–33 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386, 31–45 (2015).

  11. Coppi, A. et al. Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. Cell Host Microbe 2, 316–327 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coppi, A. et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J. Exp. Med. 208, 341–356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olotu, A. et al. Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure. N. Engl. J. Med. 368, 1111–1120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Olotu, A. et al. Seven-year efficacy of RTS,S/AS01 malaria vaccine among young African children. N. Engl. J. Med. 374, 2519–2529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nussenzweig, R.S., Vanderberg, J., Most, H. & Orton, C. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature 216, 160–162 (1967).

    Article  CAS  PubMed  Google Scholar 

  16. Clyde, D.F., Most, H., McCarthy, V.C. & Vanderberg, J.P. Immunization of man against sporozite-induced falciparum malaria. Am. J. Med. Sci. 266, 169–177 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Rieckmann, K.H., Carson, P.E., Beaudoin, R.L., Cassells, J.S. & Sell, K.W. Letter: sporozoite induced immunity in man against an Ethiopian strain of Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg. 68, 258–259 (1974).

    Article  CAS  PubMed  Google Scholar 

  18. Hoffman, S.L. et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J. Infect. Dis. 185, 1155–1164 (2002).

    Article  PubMed  Google Scholar 

  19. Hoffman, S.L. et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum. Vaccin. 6, 97–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Seder, R.A. et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341, 1359–1365 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Mordmüller, B. et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature 542, 445–449 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Sissoko, M.S. et al. Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect. Dis. 17, 498–509 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zavala, F. et al. Rationale for development of a synthetic vaccine against Plasmodium falciparum malaria. Science 228, 1436–1440 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Kumar, K.A. et al. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature 444, 937–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Triller, G. et al. Natural parasite exposure induces protective human anti-malarial antibodies. Immunity 47, 1197–1209.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dyson, H.J., Satterthwait, A.C., Lerner, R.A. & Wright, P.E. Conformational preferences of synthetic peptides derived from the immunodominant site of the circumsporozoite protein of Plasmodium falciparum by 1H NMR. Biochemistry 29, 7828–7837 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Ghasparian, A., Moehle, K., Linden, A. & Robinson, J.A. Crystal structure of an NPNA-repeat motif from the circumsporozoite protein of the malaria parasite Plasmodium falciparum. Chem. Commun. (Camb.) 365, 174–176 (2006).

    Article  Google Scholar 

  28. Oyen, D. et al. Structural basis for antibody recognition of the NANP repeats in Plasmodium falciparum circumsporozoite protein. Proc. Natl. Acad. Sci. USA 114, E10438–E10445 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fisher, C.R. et al. T-dependent B cell responses to Plasmodium induce antibodies that form a high-avidity multivalent complex with the circumsporozoite protein. PLoS Pathog. 13, e1006469 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hernández, E.C., Suárez, C.F., Parra, C.A., Patarroyo, M.A. & Patarroyo, M.E. Identification of five different IGHV gene families in owl monkeys (Aotus nancymaae). Tissue Antigens 66, 640–649 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Krishnamurty, A.T. et al. Somatically hypermutated Plasmodium-specific IgM+ memory B cells are rapid, plastic, early responders upon malaria rechallenge. Immunity 45, 402–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weill, J.-C., Weller, S. & Reynaud, C.-A. Human marginal zone B cells. Annu. Rev. Immunol. 27, 267–285 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Lindner, S.E. et al. Total and putative surface proteomics of malaria parasite salivary gland sporozoites. Mol. Cell. Proteomics 12, 1127–1143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Swearingen, K.E. et al. Interrogating the Plasmodium sporozoite surface: identification of surface-exposed proteins and demonstration of glycosylation on CSP and TRAP by mass spectrometry-based proteomics. PLoS Pathog. 12, e1005606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rathore, D. et al. An immunologically cryptic epitope of Plasmodium falciparum circumsporozoite protein facilitates liver cell recognition and induces protective antibodies that block liver cell invasion. J. Biol. Chem. 280, 20524–20529 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Bongfen, S.E. et al. The N-terminal domain of Plasmodium falciparum circumsporozoite protein represents a target of protective immunity. Vaccine 27, 328–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Espinosa, D.A. et al. Proteolytic cleavage of the Plasmodium falciparum circumsporozoite protein is a target of protective antibodies. J. Infect. Dis. 212, 1111–1119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tissot, A.C. et al. Versatile virus-like particle carrier for epitope based vaccines. PLoS One 5, e9809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsia, Y. et al. Corrigendum: Design of a hyperstable 60-subuni 60-subunit protein icosahedron. Nature 540, 150 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Pappas, L. et al. Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature 516, 418–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Joyce, M.G. et al. Vaccine-induced antibodies that neutralize group 1 and group 2 influenza A viruses. Cell 166, 609–623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Charoenvit, Y. et al. Monoclonal, but not polyclonal, antibodies protect against Plasmodium yoelii sporozoites. J. Immunol. 146, 1020–1025 (1991).

    CAS  PubMed  Google Scholar 

  43. Charoenvit, Y. et al. Inability of malaria vaccine to induce antibodies to a protective epitope within its sequence. Science 251, 668–671 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Sack, B.K. et al. Humoral protection against mosquito bite-transmitted Plasmodium falciparum infection in humanized mice. NPJ Vaccines 2, 27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Roggero, M.A. et al. Synthesis and immunological characterization of 104-mer and 102-mer peptides corresponding to the N- and C-terminal regions of the Plasmodium falciparum CS protein. Mol. Immunol. 32, 1301–1309 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Tan, J. et al. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature 529, 105–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Traggiai, E. et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med. 10, 871–875 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaushansky, A., Rezakhani, N., Mann, H. & Kappe, S.H.I. Development of a quantitative flow cytometry–based assay to assess infection by Plasmodium falciparum sporozoites. Mol. Biochem. Parasitol. 183, 100–103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods 329, 112–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Lefranc, M.-P. et al. IMGT, the international immunogenetics information system. Nucleic Acids Res. 37, D1006–D1012 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Goujon, M. et al. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38, W695–9 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kepler, T.B. Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors. F1000Res. 2, 103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liao, H.-X. et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496, 469–476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–8 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bordoli, L. et al. Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc. 4, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Lepore, R., Olimpieri, P.P., Messih, M.A. & Tramontano, A. PIGSPro: prediction of immunoglobulin structures v2. Nucleic Acids Res. 45 W1, W17–W23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Connolly, M.L. The molecular surface package. J. Mol. Graph. 11, 139–141 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Gelin, B.R. & Karplus, M. Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment. Biochemistry 18, 1256–1268 (1979).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Nussenzweig (Rockefeller University) and H. Wardemann (German Cancer Research Center) for providing reagents for antibody cloning and expression. This work was supported in part by the Swiss Vaccine Research Institute, by the European Research Council (grant no. 670955 BROADimmune) and by the Fondazione Aldo e Cele Daccò. J.T. is funded by the Wellcome Trust (grant no. 204689/Z/16/Z). B.S. is funded by the National Institutes of Health (grant no. F32 AI 114113). The authors would like to thank first and foremost the study volunteers for their participation in the study. We also thank the entire study team at the Bagamoyo branch of the Ifakara Health Institute and the manufacturing, quality control, regulatory and clinical teams at Sanaria, Inc. for their contributions to the conduct of the trial. We would like to thank M. Tanner (former director of the Swiss Tropical and Public Health Institute, Basel) for his vision and support of the development of the clinical trial platform enabling whole sporozoite–based malaria vaccine trials in Bagamoyo, Tanzania. D.O. and I.A.W. are funded by PATH's Malaria Vaccine Initiative under a collaborative agreement with The Scripps Research Institute and by the Bill and Melinda Gates Foundation. A.L. and F.S. are supported by the Helmut Horten Foundation. This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. The Tanzanian Commission on Science and Technology (COSTECH), the Ifakara Health Institute, and the Swiss Tropical Public Health Institute provided funding for the clinical trial. The functional assays were supported by the Bill and Melinda Gates foundation (Investment ID: 24922). The development, manufacturing, and quality control release and stability studies of PfSPZ Vaccine and PfSPZ Challenge were supported in part by National Institute of Allergy and Infectious Diseases (NIAID) Small Business Innovation Research grant 5R44AI055229. Sanaria supported transport of PfSPZ Vaccine and PfSPZ Challenge to the study site and syringe preparation.

Author information

Authors and Affiliations

Authors

Contributions

J.T. characterized monoclonal antibodies, analyzed the data and wrote the manuscript; B.K.S. performed in vivo assays, analyzed the data and wrote the manuscript; D.O. performed structural analysis, analyzed the data and wrote the manuscript; I.Z. collected samples, conducted in vitro assays, analyzed the data and wrote the manuscript; L. Piccoli characterized monoclonal antibodies, analyzed the data and wrote the manuscript; S.B. sequenced and expressed antibodies; M.F. performed bioinformatics analysis; C.S.F. immortalized memory B cells; J.M and L. Perez immunized mice; S.J. supervised cohorts; S.A. oversaw the clinical trial and provided PBMCs to the laboratory team; G.C. provided PfCSP peptides; L.V. designed peptide and antibody mutants; F.S. and S.H.I.K. provided supervision; S.L.H. and B.K.L.S. produced PfSPZ Vaccine and PfCSP, prepared the syringes used to immunize, and provided PfSPZ for antibody assays, including screening of monoclonal antibodies; C.D. handled cohorts and provided supervision; I.A.W. supervised structural analysis and wrote the manuscript; A.L. provided overall supervision, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Antonio Lanzavecchia.

Ethics declarations

Competing interests

A.L. is the scientific founder and shareholder of Humabs BioMed. F.S. is a shareholder of Humabs BioMed. B.K.L.S. and S.L.H. are salaried employees of Sanaria Inc., the developer and owner of the PfSPZ Vaccine and PfSPZ Challenge and the sponsor of the clinical trials. In addition, B.K.L.S. and S.L.H. have a financial interest in Sanaria Inc.

Supplementary information

Supplementary Figures & Tables

Supplementary Figures 1–9 & Supplementary Table 1–2 (PDF 13682 kb)

Life Sciences Reporting Summary (PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Sack, B., Oyen, D. et al. A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein. Nat Med 24, 401–407 (2018). https://doi.org/10.1038/nm.4513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing