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Human phenotyping on a population scale

Vivien Marx

Large-scale phenotyping is generating much data that geneticists can harness. Amid the excitement about
the possibilities, there are some points of caution.

The whirlwind of data collection in human
genomics has a dynamic new partner: the
collection of human phenotypic data on a
massive scale. These data—on eating behav-
ior, anatomical differences or biochemical
markers, for example—will be important
for interpreting the troves of genetic infor-
mation. Population-scale phenotyping can
power genetic association studies and con-
tribute to deciphering the genetic basis of
human biology and disease. It can also help
define what is healthy and ferret out cryptic
or latent disease.

The data flood will have many sources.
Some projects leverage mobile phones
to amass data from large numbers—
potentially millions—of people. The hope is
to vastly increase participation in research
and to expand data collection beyond what
is collected during physician visits. Project
initiators seek an interactive relationship
with participants, who choose which data
they will share when, and who directly
receive information they can discuss with
their physicians.

Critics assert that large-scale phenotyp-
ing projects raise privacy concerns, have a
problematic lack of control groups and have
the potential to overtreat asymptomatic
people!. Proponents say that participant data
and records can be protected and that these
initiatives will support preventive healthcare
and deeply inform genetics research?.

New apps, new data

The Google Baseline Study is a phenotyp-
ing venture to define a health baseline in
people. Along with scientists at Duke and
Stanford Universities’ Schools of Medicine,
the organizers will analyze DNA from up
to 10,000 people, perform biochemical tests
and track other health-related aspects such
as eating habits.
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Exercise regimes, eating habits and other lifestyle and health-related data are being captured in large-
scale initiatives. Geneticists can look forward to a new data tsunami.

The project’s pilot has begun with 175
paid participants who undergo a physical
exam as well as blood, urine and saliva-
based tests and who are asked about their
medical history and exercise habits. After
assessing these first results, organizers plan
to scale up the project to include genome
sequencing and cell-based assays, such as
immune cell profiling.

The Apple ResearchKit software helps
researchers tap into the iPhone user base,
letting them develop apps to collect data
from the healthy and from people with
disease. Once an app is downloaded, the
scientists can build their groups of partici-
pants.

One such app-based study is the Mobile
Parkinson Observatory for Worldwide,
Evidence-based Research, mPower, spon-
sored by the nonprofit organization Sage

Bionetworks, directed by Stephen Friend,
and which also co-developed the app.
Scientists and clinicians at five universities
and at Sage Bionetworks, will be analyzing
the data from people with various stages of
Parkinson’s disease.

After they consent to join the mPower
study, participants receive questionnaires
on their iPhones about their health, diet
and exercise habits. They are asked to tap
on their phone a certain way as part of
manual dexterity exercises. Participants
make choices about if and how they want
personal data to be shared; their data will
be stored in Sage Bionetworks’ platform,
Synapse.

There are also Android-based apps. And
other phenotype-oriented data-capture
projects are operated through founda-
tions; the Michael J. Fox Foundation, for
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instance, has launched a virtual, web-based
clinical study called Fox Insight, which will
be linked to mPower later this year.

Other large-scale projects include both
phenotypic data collection and genome
sequencing from the start. The 100K
Wellness Project—launched by Leroy
Hood, president of the Institute for Systems
Biology (ISB), and his team—just com-
pleted a ten-month study of 100 individu-
als. Besides sequencing these participants’
whole genomes, the team conducted blood,
saliva and stool analysis. Information about
sleep patterns and heart rate was captured
through activity trackers such as the Fitbit
bracelet. The data analysis takes place at ISB,
and project organizers are planning to scale
up the project to profile 100,000 individu-
als. ISB has also spun out a company called
Arivale that will be involved in this project.

The US National Institutes of Health
(NIH) is creating a cohort of ultimately a mil-
lion people as part of the Precision Medicine
Initiative announced by US President Barack
Obama earlier this year. The cohort will be
composed of volunteers willing to share
medical and lifestyle information; their
DNA, RNA and proteins will be profiled
from tissue samples, all with a view to par-
ticipant privacy. The details of this audacious
effort, NIH director Francis Collins said in a
statement, are still unfolding, but the results
from studying such as large group “will build
the scientific evidence necessary for moving
precision medicine from concept to reality.”

The Harvard Personal Genome Project
(PGP) has recruited over 4,000 volunteers
willing to openly share genomic and health
data. Harvard University researcher and PGP
founder George Church says that PGP has
been working with Google since 2007 and
that the teams are discussing how to combine
PGP and Baseline cohorts.

PGP lets participants capture data around
the clock, and new data types can be added to
the various ‘omics and imaging data already
in the database, says Church. As the world’s
only cohort with fully open-access data shar-
ing, the PGP cohort is especially attractive
for research projects, he says, and, “it would
make great sense if the NIH 1 million cohort
included a major subset from PGP.”

One of the most important benefits of
these phenotyping projects comes from the
expanded genomic data sets on healthy indi-
viduals, says Erin Cox, deputy director of the
Institute for Genomic Medicine at Columbia
University Medical Center. The data allow
for better inferences when scientists study

disease genomes or genomes from individu-
als with unique phenotypes. Analyses with
sample sizes this large and with carefully col-
lected phenotypic data in healthy people pro-
filed so comprehensively have never before
been possible, she says. It will be more within
researchers’ grasp to do multidimensional
analyses that look for associations between
multiple coexisting polymorphisms and con-
stellations of phenotypes, says Cox.

At the same time, it is unclear whether
these sample sizes will be enough in all cases.
As Cox explains, “we do not have sufficient
information yet about the genetic architec-
tures of most traits to know for sure what
the outcomes will be, but these studies are
certainly a first step towards resolving those
questions”

Small surprises

By connecting genotypic and phenotypic
information, scientists can find clusters
of unexpected manifestations of certain
genomic variants, says Teri Manolio, who
directs the Division of Genomic Medicine at
the NTH National Human Genome Research
Institute (NHGRI). One study, with which
Manolio was not involved, delivered this
kind of surprise in the form of subtle
disease-related phenotypes that are not read-
ily detected without genetic information.

In June, Leslie Biesecker, who directs
NHGRT’s Medical Genomics and Metabolic
Genetics Branch, and his team published
results relating to the sequenced genomes
of nearly 1,000 people®. The team sifted
through more than 100,000 genetic vari-
ants. They focused on 100 people with rare
variants associated with disease and were
able to reach 79 of them for a thorough
clinical checkup. Of these individuals, 34
had what turned out to be conditions—
detectable phenotypes including heart and
lung conditions as well as skin and hearing
disorders—that had not been noted previ-
ously. This follow-up to the genomic infor-
mation is what the scientists are calling iter-
ative phenotyping, which involves studying
people with disease-causing variants more
closely for subtle bodily changes indicative
of early disease.

According to the study authors, the
results show how such data can play a role
in preventive medicine and help to capture
the full spectrum of genotype-phenotype
correlation. The results also are relevant
for population genetics: previous estimates
indicated that around 0.2% of the US popu-
lation may have a genetic condition, but this
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study indicates that number might actually
be closer to 3%.

One individual taking part in ISB’s 100K
Wellness Project, who has identified him-
self in articles, turned out to have elevated
homocysteine levels in his blood, which is
associated with heart disease?. Genome
analysis helped to explain this phenotype.
His genome contains a variant of the methy-
lenetetrahydrofolate reductase (NAD(P)H)
(MTHFR) gene, which can interfere with the
body’s ability to absorb the B vitamin folate
and can lead to a buildup of homocysteine.
He was able to address this issue by adjusting
his vitamin intake.

For iterative phenotyping, it is useful to
also include family members in such ven-
tures to address potential medical issues,
says NIH’s Manolio. Their inclusion can also
help advance research projects.

But as scientists dive through genomic
and phenotypic information, they will want
to proceed with caution. “Make sure you
have participants’ consent to look for and
report a wide range of phenotypes, not just
the phenotypes you originally proposed to
study,” says Manolio. And, she points out,
identifying an association between a geno-
type and a phenotype does not automatically
mean it is causal. “Amazing how often people
leap to causal inferences on the slimmest of
evidence,” she says.

The payoff of large-scale human phe-
notyping for genetics research will likely
be large, says Manolio. These results can
expand the understanding of the spectrum
of disease-causing mutations. And, she says,
they can help to interpret the thousands, if
not millions, of variants of unknown signifi-
cance that are being identified by exome and
genome sequencing.

Speaking the same language

Privacy rules govern the use of electronic
health records in research. But even when
consent is granted, making genotype-
phenotype associations with these data can
be difficult. Patients’ phenotypic traits tend
to be described in
free text, making
them not readily

Phenotyping helps
scientists study
complex disease, says
Helen Parkinson. They
can then compare
phenotypes shared
between common and
rare diseases.
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In medical records,
patients’ phenotypic
traits tend to be
described in free
text, says Michael
Brudno. There

are ways to make
these descriptions
computable.
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computable, says
Michael Brudno,
a computer scientist at the University of
Toronto; he also directs projects involving
phenotypic analysis of individuals with rare
disorders at The Hospital for Sick Children.
Ontologies can help, such as the Human
Phenotype Ontology, which is a standard-
ized vocabulary with over 11,000 entries
that describes all defects related to human
disease conditions. But, says Brudno, health
records often do not use ontologies to
describe a patient’s condition.

For example, if clinician-scientists want
to study neurodevelopmental disorders,
they might encounter records with the
abbreviation MR, indicating the diagnosis
of mental retardation. That term has been
replaced with the expression ‘intellectual
disability’ Or, a physician might write that a
child spoke his or her first words at age five
instead of writing that the child has expres-
sive language delay.

To help make such phenotypic descrip-
tions computable, Brudno and his group
have built PhenoTips, software that helps
to standardize data about pediatric patients.
The main goal, he says, is to help research-
ers find and group patients. Then research-
ers can search for genomic data on these
individuals and explore the genes shared
by patients with similar phenotypes.

PhenoTips is used in labs and hospi-
tals and by research ventures around the
world, says Brudno. One public-private
project using PhenoTips is Neuromics,
which includes efforts to connect pheno-
typic and genotypic data about individuals
with neuromuscular and neurodegenera-
tive diseases.

The Human Phenotype Ontology is built
into PhenoTips, and the software draws
on resources of the Monarch Initiative, an
organization that supports computational
approaches for cross-species phenotype
analysis. One such approach is Exomiser,
software with which to compare mouse
and human phenotypic data®. Tools are one
part of the equation; collaboration between
researchers is another.

As these large-scale phenotyping projects
unfold, Helen Parkinson at the European
Bioinformatics Institute (EBI) sees an
important role for the Global Alliance for
Genomics and Health (GA4GH). This orga-
nization draws together scientists in aca-
demia and companies to develop standards
to enable sharing of genomic and clinical
data in a reproducible and robust way. In
the alliance’s working groups, researchers
clarify and compare the particulars of data
capture in different fields such as cancer,
rare diseases or nutrition. This conversation
is needed because it is not straightforward
to standardize questions about, for example,
the eating habits of people or to make this
information computable, says Parkinson.
The data are more comparable if the same
ontology terms are associated with a given
question and the results.

Parkinson works on a number of pheno-
typing and genomics projects with human
data, such as the NHGRI-EBI genome-wide
association study (GWAS) catalog, and does
tool development and data analysis also
with data on mice, stem cells and plants®.
The larger the phenotypic data collection,
the greater the need to make these data
computable and the more necessary ontolo-
gies become, says Parkinson.

‘Data wranglers’ are research staff who
help to facilitate computational genotype-
phenotype analysis as part of the Mouse
Phenotyping Informatics Infrastructure
consortium, which is an NIH-funded
effort to manage the large data volumes
of the International Mouse Phenotyping
Consortium (IPMC) and which includes
the EBI, Medical Research Council Harwell
and the Wellcome Trust Sanger Institute.
Data wranglers understand a given research
domain and spot errors or inconsistencies in
data collections. In a longitudinal study, an
assay or an instrument might be modified,
and the data description associated with the
measurement must reflect that shift. People
are better than computers at detecting such
changes, says Parkinson, but she and her
team are working on how to teach comput-
ers to do so.

Lessons from the mouse

Parkinson sees plenty of lessons for the new
human phenotyping ventures from mouse
phenotyping projects—for example, from
the large-scale IMPC. IMPC scientists at 18
research institutions around the world pro-
duce knockout mice for 20,000 mouse genes
and also profile the mice phenotypes. The
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consortium has five national funders and
also two corporate sponsors, Charles River
Laboratories and Taconic Biosciences.

One of Parkinson’s projects involves
linking human GWAS data to IMPC data
to help find new mouse models of dis-
ease. One goal is to facilitate the search for
mouse phenotypes that might be relevant
for an experiment based on a human phe-
notype of interest.

There are a few caveats to address with
such cross-species data comparisons, such as
finding comparable measurement approach-
es. Mice can be studied in ways that humans
cannot, such as with calorimetry. “You can
put them in a jar and measure everything
that they eat, everything that they pee out, all
the oxygen they consume,” says Parkinson,
referring to a metabolic cage. It would be
unethical to study humans in this fashion.
But there are controlled tests to capture
human metabolic data, such as a gestational
diabetes test that measures how fast a per-
son’s blood sugar level drops after imbibing
asugary drink.

Parkinson and her colleagues have found
terms in mouse data annotations that do not
have a corresponding term in the Human
Phenotype Ontology. To address this conun-
drum she, along with scientists at Medical
Research Council Harwell and the Sanger
Institute, has been applying the PhenoDigm
(phenotype comparisons for disease genes
and models) software’. In the absence of
an exact or lexical match, the software can
predict orthogonal matches. For example,
she says, mice do not speak, so one can-
not readily find parallels for human speech
disorders. Scientists can use PhenoDigm in
these instances. For example, it will map the
human difficulty of articulating speech to
abnormalities of the larynx in mice.

|
. )
* b
N ; 3
: e
b
"y, .

The new human phenotyping ventures can draw
on lessons learned from mouse phenotyping
projects, such as the International Mouse
Phenotyping Consortium (IMPC).
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Geneticists know to be cautious when
using such predicted matches, but having
it on hand helps to narrow a large pool of
genetic variants down to a smaller group
as scientists hunt for clinically relevant
phenotype-genotype connections.

Phenotyping helps scientists work on com-
plex disease. They can start with rare-disease
phenotypic data. When looking at pheno-
types shared between common and rare
diseases, says Parkinson, they can use what
they learn about rare disease to explore the
mechanism of action in the common disease.

Some researchers use the shorthand
‘knockout human’ to refer to a person with
a completely inactive, and often rare, form
of a gene. Using genotype and phenotype
data about these individuals, researchers can
devise a model organism-based gene-editing
experiment. And then, says Parkinson, they
might be able to find phenotypes that cor-
respond to these rare genetic conditions and
perhaps also choose a humanized mouse as
the basis for additional research.

Statistics caveats
Big phenotypic data sets have great pros-
pects, but they raise big challenges, too, says
Yoav Benjamini, a statistician at Tel Aviv
University. Benjamini co-developed the
concept of false discovery rate, which showed
how to address the pitfalls of drawing conclu-
sions when many variables are measured?®.
Even in well-controlled experiments
involving mouse behavioral phenotyp-
ing with two strains of mice in one lab, the
results might not be
readily replicated
in another lab even
when measuring the

Big phenotypic data
sets are promising,
and they raise big
challenges, says Yoav
Benjamini.
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same phenotype with the same strains, says
Benjamini. This experience highlights issues
to be expected with human phenotype data-
bases, with measurements that are vaguely
defined or that are based on different mea-
surement techniques.

In well-designed human trials, says
Benjamini, there are documented mea-
surement errors when recording eating
habits, for example. In the new pheno-
typing projects, there will be plenty more
variation due to factors such as age or
living conditions. “We have learned that
standardization of phenotype definitions
is not enough,” he says. Methods are need-
ed to address these statistical challenges.
Although the knowledge for such methods
exists, he is concerned there may be a lack
of awareness in the research community,
particularly among casual users of phe-
notyping data. He is working with IPMC
biostatisticians and says the consortium is
aware of the issues.

Another challenge with population-
scale phenotyping is connected to the
implications of searching across many
phenotypes and selecting only the few
promising ones, says Benjamini. In that
case, the burden of proof is higher than
when looking at many phenotypes con-
nected to one particular genomic location.
“The increased burden is essential in order
to limit the chance for the discoveries to be
false,” he says.

The proposed data sets will have many
more layers of multiplicity: there will be
multiple genomic aspects such as gene
expression, single-nucleotide polymor-
phisms and methylation. And there will be
multiple phenotype subsets—for example:
male, 18-20 years old, student, with a cer-
tain grade point average range, who grew
up in a small town, whose parents both
work from home, whose body mass index
is above 20, and other traits.
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Unlike typical genome-wide association
scans, a database open to scientists and
that allows repeated querying, possibly
even automatically by a ‘bot} adds a unique
dimension of multiplicity, says Benjamini.
“In view of that, how can we take care that
the ‘extremely interesting and highly sig-
nificant’ results mined from the database
stand the scrutiny of replication and avoid
flooding the scientific literature, and the
public in general, with false discoveries?”
He and colleagues at the Technion, Tel
Aviv University and Stanford University
have been looking at statistical methods to
address two layers of multiplicity, in which
a genome-wide search for associations
is conducted over multiple phenotypes.
“Addressing more layers of complexity is
the next challenge statisticians should tack-
le,” he says, adding that the basic frame-
work for this selective inference exists, an
approach he and others are working on.

For the conclusions derived from these
large-scale phenotyping projects to be valid,
“the open database, in spite of its name, has
to be monitored and even actively man-
aged,” says Benjamini. “No bots-generated
discoveries, please”
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