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in the entire metagenome sample. In con-
trast, strain-level reconstructions shed 
light on which genomic properties, such 
as particular gene functions or even single-
nucleotide polymorphisms, are distinctive 
for particular microbial and host pheno-
types, says McHardy. Such reconstructions 
help scientists explore metabolic changes in 
strains over time or under varying condi-
tions. Strain-level information could con-
tribute to research about pathogen–host 
interaction, she says, which can help with 
treatment decisions and improve under-
standing of a pathogen’s biology. Analysis 
can reveal microevolution aspects and phe-
nomena such as horizontal gene transfer or 
mutational hot spots.

The field’s progress has led to microbi-
ome-focused biotech ventures, and larger 
companies are taking notice. What he finds 
exciting, says Dirk Gevers, who directs 
the Janssen Human Microbiome Institute 

Microbiology: the road to strain-level identification
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Tools are emerging to help labs trawl for sequences that reveal microbial strains and their functional 
potential in deep pools of metagenomic data.

‘Who is there’ and ‘what are they doing’ are 
typical questions in military intelligence and 
in metagenomics. Both fields sift through 
big data for signals. Speed is crucial when 
averting terrorist threats or hunting the 
cause of food contamination or an infec-
tious disease outbreak. In calmer times, both 
communities want to keep learning about 
their subjects of interest. Both communi-
ties also benefit from sophisticated tools. 
Metagenomics researchers analyze genetic 
information from microbes in different envi-
ronments, including the human body, using 
high-throughput sequencing and computa-
tional methods.

In metagenomics, researchers might 
analyze sequencing reads to find out how 
the gut microbiome differs between indi-
viduals with and without Crohn’s disease; 
others capture the teeming bacterial diver-
sity in samples of soil removed at different 
times from the same location or in ocean 
water samples taken at varying time points 
or depths. Analyses reveal slews of invis-
ible microbial species. But addressing the 
question ‘who is there’ calls for more than 
species-level identification: researchers want 
to identify microbes on the strain level.

Some, but not all, microbial strains spell 
trouble. US officials recently determined 
that Shiga-toxin-producing Escherichia 

coli (STEC O26) caused food poisoning 
in customers of a particular restaurant 
chain. In the summer of 2011, the food-
borne pathogen enterohemorrhagic E. coli 
(EHEC) O104:H4 led to illness and deaths 
in Germany.

Successful strain-level identification is 
part of a larger metagenomics trend. Over 
the past five to ten years, scientists have 
continuously improved the resolution of 
their microbiome data analysis, says Nicola 
Segata, a metagenomics methods developer 
at the University of Trento, Italy. Scientists 
kept moving down the taxonomic ranks as 
they distinguished phyla, families, genera 
and species. The discovery of microbial 
diversity below the species level led them 
further still. “Differences in different strains 
of the same species are crucial for a lot of 
tasks,” says Segata.

It has been difficult to extract strain-level 
insight from short-read sequence data. 
Now it’s becoming more routinely possible 
to extract not just species genomes but also 
strains from the metagenome data con-
tained in multiple samples, says Christopher 
Quince, a microbiome researcher and meth-
ods developer at University of Warwick 
Medical School.

Within the same species, microbes can 
differ genetically and perform quite differ-
ent functions. Such differences might help 
to explain the emerging contradictions 
in the burgeoning microbiome literature. 
Different labs find varying types of asso-
ciation of microbial phyla with certain 
diseases, says Alice McHardy, a computa-
tional biologist at the Helmholtz Center 
for Infection Research in Braunschweig, 
Germany. Strain-level analysis may help 
resolve these seeming contradictions.

One method, the ‘bag of genes’ approach, 
looks at the functions encoded by all genes 

Bacteria of one species can appear alike, but 
different strains can actually differ markedly from 
one another and have different functions.
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Analysis of both DNA and RNA gives a fuller view 
of a microbial community, says Nicola Segata.
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(JHMI), is that new types of microbiome-
based products could be more natural inter-
ventions; they might be used just as disease 
develops and could potentially deliver more 
complex and subtle signals to the host.

The JHMI, which is part of Janssen 
Research and Development, one of the 
Janssen Pharmaceutical Companies of 
Johnson & Johnson, is pursuing collabora-
tions with entrepreneurs and with academic 
and clinical labs as it ramps up microbiome-

specific in-house expertise. Gevers was pre-
viously at the Broad Institute of Harvard and 
MIT and worked on the National Institutes 
of Health Human Microbiome Project, a 
large-scale project devoted to characteriz-
ing the human microbiome’s role in health 
and disease1. Products based on microbes 
cannot be an indiscriminate mix; they will 
contain specific strains selected for desired 
qualities and functions, says Gevers. Strain-
level insight is only slowly emerging; new 
analytical technologies are starting to 
change that.

Who’s there?
Amplicon sequencing has long helped 
researchers analyze samples both of culti-
vable microbes and of those that fail to grow 
in the lab. The technique leverages small dif-
ferences in a distinctive taxonomic marker: 
the small-subunit ribosomal RNA (16S) 
gene locus that is highly conserved across 
microbes. 16S rRNA sequencing remains a 
“powerful and cost-effective tool” for many 
experiments, says Segata, yet it is not as use-
ful for studying aspects in which strain-level 
differences matter. In his view, and especial-
ly for microbes that cannot be cultivated in 
the lab, shotgun metagenomics is “the only 
way to go for strain-level profiling.”

Shotgun metagenomic sequencing lets 
scientists explore ‘who is there’. A sample’s 
jumble of microbial DNA is sequenced and 
analyzed to shed light on taxonomic iden-
tities. A sample from a person’s gut inevi-
tably includes bacterial, fungal, archaeal, 
viral and human DNA, says Segata. Add 
this to the overall microbial diversity and 
it’s a seemingly intractable analytical chal-
lenge. Quince offers a thought experiment 
to describe how labs assign sequence reads 
to the strains from which they came (see 
Box 1, ‘What the monk saw’).

Computational tools, sequencing tech-
nology with longer reads, and lower error 
rates will let scientists move toward com-
prehensively characterizing all microbes 
in samples at the strain level from shotgun 
metagenomes, says McHardy.

What motivates the community is that 
strain-level identification connects sequenc-
ing studies based on human clinical samples 
to functional testing in animal models, says 
Julie Segre, an investigator at the National 
Human Genome Research Institute. She is 
also part of the Human Microbiome Project, 
now in its second phase. “You can’t take a 
bunch of base pairs of DNA from a sequenc-
er and use them to colonize a mouse,” says 
Segre. That would not successfully create a 

BOX 1  WHAT THE MONK SAW: A METAGENOMIC TALE
Dramatis personae: libraries: microbial samples; book: a 
microbial species; book versions: strains; words and letters: 
genomic data; reconstructions: continguous genomic segments 
(contigs); shared colors: metagenomic binning, which uses 
shared frequencies across samples in order to assign contigs to 
species or strains.

A bibliophile medieval king wants to survey Europe’s libraries 
by copying all the books. Some libraries hold many copies of one 
title, such as the Bible or Aesop’s Fables. The king seeks out a 
monk who is a renowned, fast copyist, albeit a little unfocused.

The monk travels far and wide to monastery libraries. He 
randomly pulls out a book and copies 50 words onto a parchment 
snippet. He repeats this task a million times, sometimes with the 
same, sometimes with a different book. He puts the snippets in 
a sack and travels onward. Over time, he enlists other copyists to 
help with the copying tasks.

The monk returns home, empties the sacks and sits amid 
mountains of paper snippets. He matches them up, finds overlap 
and reconstructs a few longer texts. But he is stymied by 
identical book sections. He can’t tell which book they came from 
when the copied text on the paper pieces is shorter than the 
longest, repeated book text segments. There is seemingly no way 
to join the many partial reconstructions. But he has a plan.

In each library he used parchment of a different hue. When 
he counts how many times each reconstruction appears in 

each color, he notices 
that some reconstructions 
share a color pattern. 
He surmises that 
reconstructions with the 
same color pattern all 
came from the same book, 
as each book has a unique 
set of frequencies across 
libraries. He is able to link 
the reconstructions to yield the book contents, even though 
the order of the partial reconstructions is still jumbled.

As the years pass, the monk realizes the copyists made 
small errors, even with the Bible. Words were changed, new 
passages were added, perhaps deliberately. Intrigued, he sets 
out to find all modified books across Europe. Again, color 
patterns save the day: he can link changed words together 
by following the pattern of colored fragments associated with 
each change. This approach allows him to reconstruct all 
the variants of an existing book. The monk—now gray, but 
limber—asks to see the king, who is overjoyed to hear the 
survey is complete. The king holds a week-long feast in the 
monk’s honor.
Source: Christopher Quince, University of Warwick Medical 
School.
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model of a bacterial infection by a specific 
strain. Strain-level identification, she says, 
connects scientists to clinical microbiology 
and to up-to-date medical knowledge.

Strain-level identification from shotgun 
data offers many opportunities to explore 
the functional capacity of strains, the ‘what 
are they doing’ question. Researchers want 
to learn which genes underlie traits of inter-
est, says Segre.

Quince is happy about the emerging 
strain-level analysis options and says that “it 
has practically made single-cell sequencing 
redundant.” His software tool CONCOCT 
takes a pile of short reads, assembles them 
into fragments and can assign the fragments 
to the organism from which the genetic 
information came2. Other tools work simi-
larly and, he says, “it is the principle that is 
more important than any one algorithm.” 
He has extended this software in De Novo 
Extraction of Strains from Metagenomes, 
or DESMAN, which infers strains and their 
abundances using patterns of nucleotide fre-
quencies. The software then determines the 
nonshared contigs that are unique to indi-
vidual strains. Such tools help researchers to 
begin to extract biologically relevant infor-
mation directly from shotgun metagenome 
reads. He points to a recent study by Jillian 
Banfield at the University of California, 
Berkeley, and her team, as one that shows 
the strength of combining metagenomic 
and functional analysis3. For example, the 
group reports finding “unusual biology” in 
bacteria, including an unusual ribosomal 
structure and a lack of ribosomal proteins 

that had been considered universally pres-
ent in bacteria.

Compute this
Mining metagenomes is computationally 
demanding, but solutions have emerged 
and more are coming, says Segata. As it 
stands, software tools can deliver “noisy,” 
partially incomplete results. At the same 
time, he says, “it is just fantastic that this is 
possible at all.”

During his postdoctoral fellowship in the 
lab of Curtis Huttenhower at the Harvard 
School of Public Health, Segata developed 
MetaPhlAn and MetaPhlAn2, which lever-
age a genetic signature to identify and 
track species, and in many cases strains. In 
practice, that can mean following around 
200 genes per species, and a sample might 
contain thousands of species, such that the 
tools dig into around one million genes. 
But, he says, “it’s like distinguishing lions 
and tigers from their footprints: it works, 
it’s great, but it does not tell you much about 
the biology of lions and tigers.”

More recently, he and his Trento team, 
along with colleagues at the University of 
Massachusetts Medical School and the 
Perinatal Institute in Ohio, have developed 
Pangenome-based Phylogenomic Analysis 
(PanPhlAn)4, which he finds more power-
ful given that it reveals the full gene reper-
toire of strains.

The pangenome is a catalog of genes for 
all sequenced strains in a species of inter-
est, says Segata. It’s built by extracting genes 
from available reference genomes and then 

binning them in gene-family clusters. This 
is how the team calculated pangenomes for 
over 400 species. PanPhlAn characterizes 
strains by identifying which combinations 
of genes, from the pangenome of each spe-
cies, are found in a sample.

Segata’s team tested the tool and discov-
ered, for example, that some tested Chinese 
individuals harbor a set of Eubacterium rec-
tale strains that are genomically distinct from 
the same species found in the gut of tested 
people in Europe and the United States. 
Segata believes many more such patterns can 
be found in metagenomic data, including 
some that correlate with disease risk.

Using PanPhlAn, researchers can also 
obtain transcriptional profiles of a micro-
bial community. Knowing which genes are 
present in a sample speaks only to potential 
organismal functions; a bacterium with a 
virulence gene that is not expressed might 
not be a troublemaker. PanPhlAn, with its 
analysis of DNA 
and RNA,  g ives 
a fuller view of a 
microbial commu-
nity, says Segata.

A computer sci-
entist who gravi-
tated toward biol-
ogy, Segata is at his 
university’s Center 
f o r  I n t e g r a t i v e 
B i o l o g y.  O n e -
third of his team 
does wet-lab work, 
and the others are 

BOX 2  COMPETITIVE BUT SENSITIVE: TOOL BENCHMARKING IN METAGENOMICS
Alice McHardy from the Helmholtz Center for Infection 
Research, Alexander Sczyrba at the University of Bielefeld 
and Thomas Rattei at the University of Vienna launched the 
Critical Assessment of Metagenome Interpretation (CAMI) 
competition, and evaluation of the first CAMI challenge is 
under way. One CAMI category assesses tools that handle 
assembly, and another assesses taxonomic profiling. A third 
category assesses binning tools, which assign individual 
sequence reads into bins that ideally hold strain-level 
information but might contain other taxonomic categories.

Evaluations are sensitive business. Scientists all too 
often discover that another lab evaluated their tool in an 
unfavorable way, says McHardy. They might have used the 
simplest settings or ones likely to deliver a suboptimal 
performance. With competitions, developers can submit 
their tools and explain how they like them to be used. The 
community can help decide how performance should be 
assessed.

The team reached out to labs that chose not to participate and 
inquired about which tool settings to use in the competition. 
“This was really well received by some,” she says.

When CAMI results are published, McHardy knows some labs 
might be disappointed by their software’s performance. The plan 
is to highlight the pros and cons of tools for different questions 
and scenarios, she says. Her lab has two tools in the competition, 
and because analysis is anonymized, she does not know how 
either is faring. “We will see how all of this will work out—in a 
few months we will know more,” she says.

She hopes that developers will continue to integrate their 
tools into the CAMI platform’s so-called docker containers. This 
integration could help to semiautomatically benchmark these 
software tools in the future. In conversations with colleagues 
who run the Critical Assessment of Protein Structure Prediction 
(CASP) she heard that such regular benchmarking accelerated the 
protein prediction field. “It would be great if we can make that 
happen for meta’omics as well,” she says.

Being a tool developer 
in metagenomics can 
become fun again and 
more productive, says 
Alice McHardy.
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computational scientists working on bio-
logical problems. He integrates the group 
for discussions and tool testing. A different 
kind of integration—tool integration—will, 
Segata hopes, begin in the metagenomics 
community. Integration means, for exam-
ple, having on hand data standards for tool 
input and output. But such standards are 
hard to establish in a rapidly changing field, 
and, he says, grant funders sometimes do 
not view tool-integration projects as favor-
ably as projects about new tools.

Another community issue is tool bench-
marking. McHardy says she and many 
other labs spend much time on perfor-

mance benchmark-
ing. She began her 
m e t a g e n o m i c s 
journey developing 
tools—for exam-
ple, PhyloPythia, 
which is a super-
vised taxonomic 
binner. Software 
tools in this class 
have exploded, she 
says, and the devel-
oper community 
has grown, too. She 
counts as many as 
one new metage-
nomic analysis tool 

published per month in 2015. The situa-
tion can be confusing when labs use dif-
ferent benchmark settings or data sets that 
might seem artificial. Along with colleagues, 
she created a community approach to tool 
benchmarking (see Box 2, ‘Competitive but 
sensitive’). The hope is that analysis results 
will also be representative of real-life ques-
tions, she says. “I think being a tool developer 
in metagenomics can become fun again, and 
more productive,” she says.

Along the way to better tools, the com-
munity has some fundamentals to discuss, 
such as the definition of a strain, says Segata. 
For example, two organisms might differ on 
average in one nucleotide every 50,000 bases, 
and researchers will disagree on whether 
these two organisms are different strains. 
The number of such differences is likely to 
vary depending on the species. There is no 
threshold with biological meaning, he says, 
that defines the limit between ‘same strain’ 
and ‘different strain’.

A long view
High-resolution analysis in metagenomics 
is a tall order, but strain-level insights are 
promising, says Gevers. This view can show 
organisms to be stable residents of an envi-
ronment for several years or longer. Within a 
habitat, different species are competing, and 
so are different strains of the same species. 

The unit of microbial action is a strain, not 
a species, he says. Being able to differenti-
ate between different strains matters greatly 
when scientists work on ways to intervene 
with a microbial community by introducing 
new strains, he says.

The next big challenge is understand-
ing the dynamics of an ecosystem, such as 
the bustling microbiome in the human gut, 
and doing so at high resolution, he says. 
Dissecting a community into its different 
strains, understanding the differences in 
genetic content and knowing which strains 
are expressing which genes or producing 
which metabolites, secreting which pep-
tides or proteins, “will be eye opening,” says 
Gevers. Spatial distribution might also mat-
ter, he says. Are strains one big mix, or, he 
asks, is there a “  ‘method to the madness’  ”?

Emerging techniques reveal the many 
different strains of a particular species in a 
sample, strain stability across different sam-
ples and, ultimately, differences in genetic 
or functional composition within a spe-
cies across samples. Gevers looks forward 
to developments that link complete genetic 
content to each strain and measure each 
strain’s activity. He is hopeful about progress 
beyond capturing the genetic composition of 
a microbial community, bringing strain-level 
analysis and resolution to RNA, metabolite 
and protein levels.

Segata and many of his colleagues hope 
sequencing costs will continue to drop, 
allowing labs to improve the sequencing 
depth with which they probe microbiomes. 
Matters get complicated when there are 
closely related strains in a sample, or when 
strains are present in amounts too low to 
detect or below the level of sequence cover-
age needed for their reconstruction. Such 
challenges motivate him and others to keep 
refining computational methods.
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Understanding an 
ecosystem, such as the 
human gut’s bustling 
microbiome, at high 
resolution is the next 
big challenge, says 
Dirk Gevers.
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