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Generalizing Moore
Over the past few years, several 
independent teams of researchers have 
noticed something surprising in historical 
data on a broad set of technologies. 
Everyone, of course, knows about 
Moore’s Law — for decades, the density 
of transistors on integrated circuits 
has doubled every two years, with 
computational speed advancing even faster. 
This spectacular record of improvement 
shows up in just about any metric. Much 
less known, however, is that this pattern of 
exponential advance isn’t actually limited 
to electronics; it applies just as well to 
technologies ranging from cars or batteries 
to beer or nuclear power.

One study, for example, looked at data 
for these and other technologies, in 28 
domains in all, stretching back over 50 years, 
and considered the rate of improvement 
for measures such as performance and 
energy efficiency. The data for all these 
technologies follows a similar exponential 
improvement, although the timescale 
for doubling can be very different, with 
annual improvement rates ranging from 
3 to 65 per cent. LED performance, 
for instance, has been improving by a 
factor of about ten each decade, whereas 
batteries have improved more slowly — 
ten-fold improvement requiring about 
40 years. Even so, it’s the same pattern: 
Moore’s Law is a law of technology in 
general (see C. L. Magee et al., available at 
http://go.nature.com/sxJbnv; 2014).

Technology is close to discovery and 
invention, and we’re used to thinking of 
these as largely unpredictable processes. 
They’re chancy, success being furthered by 
effort and investment, of course, but also 
requiring some luck. So the regularity of 
this pattern across the whole domain of 
technology is surprising. It’s not yet clear 
what it means. But it may make it possible 
to make actual predictions of technological 
progress using historical data alone, rather 
than relying on experts.

That idea comes from the work of 
physicist Doyne Farmer and economist 
Francois Lafond, who have built on these 
empirical studies. Their idea was to model 
the data on technology improvement as 
a stochastic process, using a geometric 
random walk, which naturally exhibits an 
exponential, long-term growth (or drift) 
decorated with erratic noise. Fitting such 
a process to the data on a broad class of 
technologies, they then tried to stand at 

one moment in time and to use past data 
to predict future trends. They found good 
success in making such out-of-sample 
forecasts. They don’t claim these are the 
best forecasts possible; only that this simple 
method works quite well.

Anyone can make predictions, of 
course. And historically, many predictions 
of technological futures have been 
spectacularly wrong. The really important 
thing is having some knowledge of the 
likely accuracy of a prediction. Indeed, as 
Farmer and Lafond point out, predictions 
of low accuracy can even be dangerous if 
they’re trusted. Because the mathematical 
properties of the geometric random walk 
are well studied, they were able to go further 
in deriving a closed form expression for 
each particular technology and to get an 
estimate of the expected distribution of 
forecast errors for projections over any 
interval of time. For the specific case of 
solar photovoltaic modules, for example, 
the method suggests that the price of such 
modules will most likely continue to drop 
at about 10% annually, but that there’s still a 
5% chance that prices in 2030 will be higher 
than today. 

This new capability should be valuable to 
anyone charged with making decisions on 
which technologies to invest in, especially 
policy makers aiming to invest public 
funds wisely in response to problems such 
as climate change. In pursuing alternative 
energy sources, for example, we should 
expect a lot more from investments in 
photovoltaics than from alternatives such 
as biofuels or wind. It’s possible to make 
such claims not because we know anything 
about why technologies work this way, only 
because the data implies that they do. Yet 
this data may also offer hints regarding the 
mechanisms that make one technology grow 
faster than another. 

Many people have likened technological 
advance to an evolutionary process, 
advancing as older techniques, components 
or ideas get combined in new ways. 
Biologists know that some organisms 

evolve and adapt more rapidly than others 
due to features that make it relatively easy 
to alter some elements — cell surface 
receptors in bacteria, for example — 
without undermining other underlying 
functions. Such independent flexibility 
enables fast, profitable experimentation, 
and creates the capacity for rapid evolution. 
In a recent study, Subarna Basnet and 
Chris Magee at MIT find evidence 
that something very similar seems to 
be true with technologies (preprint at 
http://arxiv.org/abs/1601.02677; 2016). The 
faster evolving ones seem to have fewer 
interactions or complex interdependences 
between their elementary components.

In the case of technology, interactions 
among components or properties happen 
in many ways. A spring mechanism might 
improve a device’s performance if it were 
made stiffer. Making it bigger might do 
that, yet would also increase the device 
weight, which might be bad. Steps to speed 
up transistors may be good for computing 
rates, yet also create more heating and 
the need for cooling systems. Engineers 
encounter these interactions all the time. 
In a clever way, Basnet and Magee found a 
way to get a rough ranking of technologies 
by the number of such interactions 
they involve. They looked at the patent 
literature and measured the frequency 
of six specific keywords — prevent, 
undesirable, requirement, fail, disadvantage 
and overcome — they suspected might 
reflect important interactions among 
components or processes. Across the 
board, in technologies ranging from 
milling machines to superconductors to 3D 
printers, they found that the rate at which 
a technology has improved is significantly 
correlated, inversely, with the frequency of 
these words in relevant patents. The more 
interactions described in the reports, the 
slower the technology advances, apparently 
because finding beneficial changes is just 
harder to do. Complexity slows discovery 
and advance.

This doesn’t explain, of course, why 
some technologies are more complex than 
others. Naively, one might think that older 
technologies, after long development, would 
grow more complex, but that’s not consistent 
with Moore’s Law holding for individual 
technologies over many decades. For now, 
we just don’t know.� ❐
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It’s possible to 
make predictions of 
technological progress 
using historical 
data alone.
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