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measure for measure

The term ‘dimensions of a quantity’ 
may conjure up a variety of images: 
perhaps a tool for checking equations 

or changing scale, a mysterious quality of 
nature, or a magical means of discovery. 
Of all the ideas of measurement theory, 
dimensions are perhaps the most valuable, 
yet equally the most elusive. What is behind 
their complex character?

The modern concept of dimension 
started in 1863 with Maxwell, who 
synthesized earlier formulations by Fourier, 
Weber and Gauss1. In doing so he added 
a nuance that we acknowledge today 
whenever we refer to the dimensions of, 
say, g (≈ 9.81 m s–2) as distance over time 
squared, rather than just the dimensional 
exponents (1, –2). By referring to the 
dimensions of a quantity, Maxwell 
seemed to imply that real things have 
natural dimensions. In the same spirit he 
designated units of mass, length and time as 
‘fundamental units’.

The consequence of Maxwell’s choice 
was both inspiration and confusion. In 
the hands of virtuosos like Lord Rayleigh 
and Osborne Reynolds, dimensional 
analysis quickly became a powerful tool for 
discovery — identification of the Reynolds 
number, which describes the complexity 
of fluid flow, is a classic example. (The 
figure shows a flow pattern hand-drawn 
by Reynolds2.) More generally, the method 
identifies relationships that are consistent 
with the laws of physics, involving only 
quantities that are relevant to a problem. 
Identifying these — even if only by inspired 
guesswork — can give huge savings of 
time in experiments and provide clear 
theoretical guidance3,4.

After Maxwell, a sense emerged that 
new fundamental laws could be discovered 
by dimensional analysis. The product of 
vacuum permeability and permittivity 
(inversed and square-rooted) shares 
dimensions with speed and indeed turned 
out to be the speed of light. Bohr’s atom 
was motivated by the fact that Planck’s 
constant shares dimensions with angular 

momentum1. But in 1922 Bridgman insisted 
that dimensions are a matter of convention: 
human choices, like units3. They can’t be 
used to discover new fundamental laws, 
only relations that derive from existing laws. 
In 1954 Maxwell’s term fundamental units 
was replaced with ‘base units’1, just to lay 
down the law.

This operational conclusion about 
dimensions may seem, even today, just a 
little too bleak for physicists, who are keen 
to get to the truth about nature, not just to 
measure it. However, even if dimensions 
were demystified a century ago, physics 
was far from finished with them. The late 
twentieth century saw the creation of a firm 
theoretical basis for dimensional analysis: 
renormalization group methods, which 
now pervade many areas of theoretical 
physics, from particle physics to condensed 
matter and fluid turbulence. Starting with 
a microscopic model, one can ‘integrate 
out’ shorter length scales and determine 
how the influence of various coupling 
parameters evolves as one zooms out from 
the microscopic to the macroscopic scale. 
Such methods can justify the choices of 
which couplings and variables to choose in 
dimensional analysis: they are the ones that 
remain relevant at large scales.

But the renormalization group also 
enables the calculation of numbers. A good 
example is its ability to calculate so-called 
anomalous dimensions, echoing the concept 
of fractal geometry where, famously, a 
coastline’s length depends ‘anomalously’ 
on the length of the measuring rod. 
Dimensional analysis shows4 that anomalous 
dimensions are necessarily the exponents of 

dimensionless ratios of quantities, generated 
by the physics of the problem.

For example, at a critical point in a 
condensed-matter system (such as the 
gas–liquid or ferromagnetic critical point), 
correlations typically decay with distance 
to a power d – 2 + η, where d is the spatial 
dimensionality and η is the anomalous 
dimension. But here the ‘distance’ is in 
fact the ratio of physical distance l to a 
microscopic distance a (typically atomic 
size) — both length scales, and all those 
in between, remain relevant. One way5 of 
introducing such a dimensionless ratio of 
dissimilar length scales is via a logarithmic 
integral, ∫al(1/r)dr = log(l/a). This commonly 
occurs in two-dimensional systems, where 
the integral is related to the fundamental 
solution of the Laplace equation. This 
enables many two-dimensional systems — 
magnets, superfluids, crystals — to show 
anomalous dimensions (criticality) over a 
broad temperature range.

It is clear that dimensions have a life 
beyond the SI brochure. Over the years 
their stock has risen, fallen and risen again, 
but some of their mystery and magic has 
always endured. This is surely because our 
changing concept of dimensions reflects 
the evolution of physics itself — a subject 
that will always be concerned with the 
problems of how to scale, how to distinguish 
between relevant and irrelevant factors, and 
how to use mathematics to find the truth 
about nature.� ❐

STEVEN T. BRAMWELL is at University 
College London, London Centre for 
Nanotechnology and Department of Physics 
and Astronomy, 17–19 Gordon Street, 
London WC1H 0AJ, UK. 
e-mail: s.t.bramwell@ucl.ac.uk

References
1.	 Roche, J. J. The Mathematics of Measurement: A Critical History 

(Athlone, 1998).
2.	 Reynolds, O. Phil. Trans. R. Soc. Lond. 174, 935–982 (1883).
3.	 Bridgman, P. W. Dimensional Analysis (Yale Univ. Press, 1922).
4.	 Barenblatt, G. I. Scaling, Self-similarity, and Intermediate 

Asymptotics (Cambridge Univ. Press, 1996).
5.	 Bramwell, S. T. et al. Phys. Rev. E 63, 041106 (2001).

The invention of dimension
Assigning dimensions to physical quantities is not just for practicality. Steven T. Bramwell reflects on the 
deeper physical connotations of it all.
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