Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film

Abstract

Skyrmions are coreless vortex-like excitations emerging in diverse condensed-matter systems, and real-time observation of their dynamics is still challenging. Here we report the first direct optical observation of the spontaneous formation of half-skyrmions. In a thin film of a chiral liquid crystal, depending on experimental conditions including film thickness, they form a hexagonal lattice whose lattice constant is a few hundred nanometres, or appear as isolated entities with topological defects compensating their charge. These half-skyrmions exhibit intriguing dynamical behaviour driven by thermal fluctuations. Numerical calculations of real-space images successfully corroborate the experimental observations despite the challenge because of the characteristic scale of the structures close to the optical resolution limit. A thin film of a chiral liquid crystal thus offers an intriguing platform that facilitates a direct investigation of the dynamics of topological excitations such as half-skyrmions and their manipulation with optical techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Real-space structures of a thin cell of a chiral liquid crystal.
Figure 2: Real-space observations of the half-skyrmion lattice structures and calculated real-space images.
Figure 3: Flickering of a hexagonal lattice of half-skyrmions.
Figure 4: Isolated half-skyrmions.

Similar content being viewed by others

References

  1. Rajaraman, R. Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory (North Holland, 1982).

    MATH  Google Scholar 

  2. Manton, N. & Sutcliffe, P. Topological Solitons (Cambridge Univ. Press, 2004).

    MATH  Google Scholar 

  3. Skyrme, T. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

    Article  MathSciNet  Google Scholar 

  4. Sondhi, S. L., Karlhede, A., Kivelson, S. A. & Rezayi, E. H. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419–16426 (1993).

    ADS  Google Scholar 

  5. Barrett, S. E., Dabbagh, G., Pfeiffer, L. N., West, K. W. & Tycko, R. Optically pumped NMR evidence for finite-size skyrmions in GaAs quantum wells near Landau level filling ν = 1. Phys. Rev. Lett. 74, 5112–5115 (1995).

    ADS  Google Scholar 

  6. Schmeller, A., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for skyrmions and single spin flips in the integer quantized Hall effect. Phys. Rev. Lett. 75, 4290–4293 (1995).

    ADS  Google Scholar 

  7. Leanhardt, A. E., Shin, Y., Kielpinski, D., Pritchard, D. E. & Ketterle, W. Coreless vortex formation in a spinor Bose–Einstein condensate. Phys. Rev. Lett. 90, 140403 (2003).

    ADS  Google Scholar 

  8. Leslie, L. S., Hansen, A., Wright, K. C., Deutsch, B. M. & Bigelow, N. P. Creation and detection of skyrmions in a Bose–Einstein condensate. Phys. Rev. Lett. 103, 250401 (2009).

    ADS  Google Scholar 

  9. Mermin, N. D. & Ho, T.-L. Circulation and angular momentum in the A phase of superfluid Helium-3. Phys. Rev. Lett. 36, 594–597 (1976).

    ADS  Google Scholar 

  10. Anderson, P. W. & Toulouse, G. Phase slippage without vortex cores: vortex textures in superfluid 3He. Phys. Rev. Lett. 38, 508–511 (1977).

    ADS  Google Scholar 

  11. Ruutu, V. M. H. et al. Critical velocity of vortex nucleation in rotating superfluid 3He- A. Phys. Rev. Lett. 79, 5058–5061 (1997).

    ADS  Google Scholar 

  12. Rößler, U., Bogdanov, A. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    ADS  Google Scholar 

  13. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  14. Yu, X. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    ADS  Google Scholar 

  15. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Google Scholar 

  16. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotech. 11, 449–454 (2016).

    ADS  Google Scholar 

  17. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    ADS  Google Scholar 

  18. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

    ADS  Google Scholar 

  19. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    ADS  Google Scholar 

  20. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    ADS  Google Scholar 

  21. Braun, H.-B. Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012).

    ADS  Google Scholar 

  22. de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 2 edn (International Series of Monographs on Physics, Oxford Univ. Press, 1995).

    Google Scholar 

  23. Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    ADS  Google Scholar 

  24. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    ADS  Google Scholar 

  25. Xu, X.-Q. & Han, J. H. Emergence of chiral magnetism in spinor Bose–Einstein condensates with Rashba coupling. Phys. Rev. Lett. 108, 185301 (2012).

    ADS  Google Scholar 

  26. Sinha, S., Nath, R. & Santos, L. Trapped two-dimensional condensates with synthetic spin–orbit coupling. Phys. Rev. Lett. 107, 270401 (2011).

    Google Scholar 

  27. Hu, H., Ramachandhran, B., Pu, H. & Liu, X.-J. Spin–orbit coupled weakly interacting Bose–Einstein condensates in harmonic traps. Phys. Rev. Lett. 108, 010402 (2012).

    ADS  Google Scholar 

  28. Bogdanov, A. New localized solutions of the nonlinear field equations. JETP Lett. 62, 247–251 (1995).

    MathSciNet  ADS  Google Scholar 

  29. Wright, D. C. & Mermin, N. D. Crystalline liquids: the blue phases. Rev. Mod. Phys. 61, 385–432 (1989).

    ADS  Google Scholar 

  30. Bogdanov, A. & Shestakov, A. Inhomogeneous two-dimensional structures in liquid crystals. J. Exp. Theor. Phys. 86, 911–923 (1998).

    ADS  Google Scholar 

  31. Bogdanov, A. N., Rößler, U. K. & Shestakov, A. A. Skyrmions in nematic liquid crystals. Phys. Rev. E 67, 016602 (2003).

    ADS  Google Scholar 

  32. Leonov, A. O., Dragunov, I. E., Rößler, U. K. & Bogdanov, A. N. Theory of skyrmion states in liquid crystals. Phys. Rev. E 90, 042502 (2014).

    ADS  Google Scholar 

  33. Kawachi, M., Kogure, O. & Kato, Y. Bubble domain texture of a liquid crystal. Jpn. J. Appl. Phys. 13, 1457–1458 (1974).

    ADS  Google Scholar 

  34. Haas, W. E. L. & Adams, J. E. Electrically variable diffraction in spherulitic liquid crystals. Appl. Phys. Lett. 25, 263–264 (1974).

    ADS  Google Scholar 

  35. Ackerman, P. J., Trivedi, R. P., Senyuk, B., van de Lagemaat, J. & Smalyukh, I. I. Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics. Phys. Rev. E 90, 012505 (2014).

    ADS  Google Scholar 

  36. Smalyukh, I. I., Lansac, Y., Clark, N. A. & Trivedi, R. P. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids. Nat. Mater. 9, 139–145 (2010).

    ADS  Google Scholar 

  37. Ackerman, P. J., Qi, Z. & Smalyukh, I. I. Optical generation of crystalline, quasicrystalline, and arbitrary arrays of torons in confined cholesteric liquid crystals for patterning of optical vortices in laser beams. Phys. Rev. E 86, 021703 (2012).

    ADS  Google Scholar 

  38. Ackerman, P. J., van de Lagemaat, J. & Smalyukh, I. I. Self-assembly and electrostriction of arrays and chains of hopfion particles in chiral liquid crystals. Nat. Commun. 6, 6012 (2015).

    ADS  Google Scholar 

  39. Posnjak, G., Čopar, S. & Muševič, I. Points, skyrmions and torons in chiral nematic droplets. Sci. Rep. 6, 26361 (2016).

    ADS  Google Scholar 

  40. Guo, Y. et al. Cholesteric liquid crystals in rectangular microchannels: skyrmions and stripes. Soft Matter 12, 6312–6320 (2016).

    ADS  Google Scholar 

  41. Fukuda, J. & Žumer, S. Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal. Nat. Commun. 2, 246 (2011).

    ADS  Google Scholar 

  42. Mizushima, T., Kobayashi, N. & Machida, K. Coreless and singular vortex lattices in rotating spinor Bose–Einstein condensates. Phys. Rev. A 70, 043613 (2004).

    ADS  Google Scholar 

  43. Su, S.-W., Liu, I.-K., Tsai, Y.-C., Liu, W. M. & Gou, S.-C. Crystallized half-skyrmions and inverted half-skyrmions in the condensation of spin-1 Bose gases with spin–orbit coupling. Phys. Rev. A 86, 023601 (2012).

    ADS  Google Scholar 

  44. Pappas, C. et al. Chiral paramagnetic skyrmion-like phase in MnSi. Phys. Rev. Lett. 102, 197202 (2009).

    ADS  Google Scholar 

  45. Blümel, T. & Stegemeyer, H. On the origin of Grandjean–Cano lines in liquid-crystalline blue phases. Liq. Cryst. 3, 195–201 (1988).

    Google Scholar 

  46. Higashiguchi, K., Yasui, K. & Kikuchi, H. Direct observation of polymer-stabilized blue phase I structure with confocal laser scanning microscope. J. Am. Chem. Soc. 130, 6326–6327 (2008).

    Google Scholar 

  47. Fukuda, J. & Žumer, S. Confinement effect on the interaction between colloidal particles in a nematic liquid crystal: an analytical study. Phys. Rev. E 79, 041703 (2009).

    ADS  Google Scholar 

  48. Pettey, D., Lubensky, T. C. & Link, D. R. Topological inclusions in 2D smectic C films. Liq. Cryst. 25, 579–587 (1998).

    Google Scholar 

  49. Oswald, P. & Pieranski, P. Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (CRC press, 2005).

    Google Scholar 

  50. Rosch, A. Magnetic skyrmions: particles or waves. Nat. Mater. 15, 1231–1232 (2016).

    ADS  Google Scholar 

  51. Yu, X. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).

    ADS  Google Scholar 

  52. Ikeda, T. & Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science 268, 1873–1875 (1995).

    ADS  Google Scholar 

  53. Nye, J. & Berry, M. Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974).

    MathSciNet  MATH  ADS  Google Scholar 

  54. Porenta, T., Ravnik, M. & Žumer, S. Complex field-stabilised nematic defect structures in Laguerre–Gaussian optical tweezers. Soft Matter 8, 1865–1870 (2012).

    ADS  Google Scholar 

  55. Fukuda, J. & Žumer, S. Cholesteric blue phases: effect of strong confinement. Liq. Cryst. 37, 875–882 (2010).

    Google Scholar 

  56. Fukuda, J. & Žumer, S. Field-induced dynamics and structures in a cholesteric-blue-phase cell. Phys. Rev. E 87, 042506 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

A.N. and U.O. acknowledge partial support from NAS of Ukraine (grant 1.4B/186) and Ukrainian–Slovenian bilateral project (grants M/13-2013 and M/100-2014). J.F. thanks Slovenian Research Agency (ARRS research programme P1-0099 and project J1-2335) and the Centre of Excellence NAMASTE for generous financial support for his stay in University of Ljubljana, during which the important part of his work was carried out. J.F. is also supported by JSPS Grant-in-Aid (KAKENHI) for Scientific Research (Grant Numbers 25400437 and JP17H02947), the Cooperative Research Program of ‘Network Joint Research Centre for Materials and Devices,’ and the Supercomputer Center, the Institute for Solid State Physics, the University of Tokyo. I.M. and S.Ž. acknowledge support of the Slovenian Research Agency (ARRS) programme P1-0099 and grants J1-6723 and J1-7300. J.F. benefited greatly from valuable discussions with H. Kikuchi, Y. Okumura, H. Higuchi, H. Yoshida, H. Orihara, T. Ohzono and J. Kishine, and technical advice on numerical calculations by T. Miura.

Author information

Authors and Affiliations

Authors

Contributions

A.N. and U.O. designed and performed the experiments. J.F. developed a framework for the calculation of microscope images, and carried out the numerical calculations. I.M. initiated the experimental work and supervised the experiments. S.Ž. supervised the theoretical work. J.F. wrote the manuscript with the input from all the other authors. All the authors discussed and analysed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Andriy Nych or Jun-ichi Fukuda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1542 kb)

Supplementary movie

Supplementary movie 1 (MP4 1405 kb)

Supplementary movie

Supplementary movie 2 (MP4 2411 kb)

Supplementary movie

Supplementary movie 3 (MOV 2277 kb)

Supplementary movie

Supplementary movie 4 (MOV 2564 kb)

Supplementary movie

Supplementary movie 5 (MP4 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nych, A., Fukuda, Ji., Ognysta, U. et al. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film. Nature Phys 13, 1215–1220 (2017). https://doi.org/10.1038/nphys4245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing