
LETTERS
PUBLISHED ONLINE: 18 SEPTEMBER 2017 | DOI: 10.1038/NPHYS4264

Majorana fermions in the Kitaev quantum spin
system α-RuCl3
Seung-Hwan Do1,2, Sang-Youn Park2, Junki Yoshitake3, Joji Nasu4, Yukitoshi Motome3,
Yong Seung Kwon5, D. T. Adroja6,7, D. J. Voneshen6, Kyoo Kim2, T.-H. Jang2, J.-H. Park2,8,9*,
Kwang-Yong Choi1* and Sungdae Ji2,8*

Geometrical constraints to the electronic degrees of freedom
within condensed-matter systems often give rise to topo-
logical quantum states of matter such as fractional quan-
tum Hall states, topological insulators, and Weyl semimet-
als1–3. In magnetism, theoretical studies predict an entan-
gled magnetic quantum state with topological ordering and
fractionalized spin excitations, the quantum spin liquid4. In
particular, the so-called Kitaev spin model5, consisting of
a network of spins on a honeycomb lattice, is predicted
to host Majorana fermions as its excitations. By means of
a combination of specific heat measurements and inelastic
neutron scattering experiments, we demonstrate the emer-
gence of Majorana fermions in single crystals of α-RuCl3, an
experimental realization of the Kitaev spin lattice. The specific
heat data unveils a two-stage release of magnetic entropy
that is characteristic of localized and itinerant Majorana
fermions. The neutron scattering results corroborate this pic-
ture by revealing quasielastic excitations at low energies
around the Brillouin zone centre and an hour-glass-like mag-
netic continuum at high energies. Our results confirm the
presence of Majorana fermions in the Kitaev quantum spin
liquid and provide an opportunity to build a unified concep-
tual framework for investigating fractionalized excitations in
condensed matter1,6–8.

Quantum spin liquids (QSLs) are an unconventional electronic
phase of matter characterized by an absence of magnetic long-
range order down to zero temperature. They are typically predicted
to occur in geometrically frustrated magnets such as triangular,
kagome, and pyrochlore lattices4, and typically display a macro-
scopic degeneracy that stabilizes a topologically ordered ground
state. The Kitaev QSL state arises as an exact solution of the ideal
two-dimensional (2D) honeycomb lattice with bond-directional
Ising-type interactions (H = J γK S

γ

i S
γ

j ; γ = x , y , z) on the three dis-
tinct links (Fig. 1a) by expressing the spin excitations in terms of
non-interactingMajorana fermions5,9. The elementary excitations of
a Kitaev QSL are localized and itinerant Majorana fermions5, which
are associates with static Z2-fluxes and propagating quasiparticles
(Fig. 1b). These two types of excitation have ramifications for the
observable physics and potential technological applications of QSL
in quantum computers10–14.

As candidates for realizing a QSL, honeycomb iridates A2IrO3
(A = Li, Na) with a spin–orbit coupled Jeff= 1/2 Ir4+ (5d5) state15
have been intensively studied. This is due to the orbital state forming
the three orthogonal bonds required for the bond-directional
exchange interactions in the geometry16. The iridates, however,
cannot avoid monoclinic distortions with anisotropic Ir–Ir bonds
disturbing the exchange frustration away from the ideal values,
and their magnetism is apparently dominated by antiferromagnetic
(AFM) ordering17,18.

A promising candidate for the Kitaevmodel system is the van der
Waals ruthenateα-RuCl3 with Jeff=1/2 Ru3+ (4d5) ions19,20. There is
a growing body of evidence thatα-RuCl3 hosts predominantly Ising-
like Kitaev interactions and that the ground state could be proximate
to theQSL state21,22. Most crystallographic studies reported the pres-
ence of themonoclinic distortions23,24, resulting in considerable con-
tribution of Heisenberg and asymmetric exchange interactions25,26.
However, these distortions are probably due to stacking faults of
the RuCl3 layers, and even lead to multiple magnetic transitions24.
Recently, significant advances in the synthesis of high-quality
α-RuCl3 crystals have been achieved. These crystals are almost
free from stacking faults and have a rhombohedral (R3̄) phase,
while preserving the Ising-type AFM state below 6.5 K due to non-
vanishing inter-layer couplings27. Importantly, this high-symmetry
structure renders isotropic Kitaev interactions (JK= J xK = J yK= J zK)
with a 94◦ Ru–Cl–Ru bond anglemaximizing the Kitaev interaction,
and the Heisenberg contribution becomes minimal26. Furthermore,
recent methodological progress in the quantum Monte Carlo
(QMC) method and cluster dynamic mean-field theory (CDMFT)
for thermally excited quantum states provides a route to identify
Majorana fermions emerging from the QSL ground state12–14. It is
predicted that thermally fluctuating quantum spins are successively
fractionalized into itinerant and localized Majorana fermions at
crossover temperatures TL (low-T ) and TH (high-T ), respectively.
At very low-temperature (T <TL),Z2-fluxes aremostly frozen in the
topologically ordered zero-temperature QSL state and the thermal
energy excites only low-energy itinerant Majorana fermions (see
Fig. 1b). On increasing the temperature across TL, the fluxes fluc-
tuate to activate localized Majorana fermions (Kitaev paramagnet).
Upon further heating, itinerant Majorana fermions are additionally
activated and the spin–spin correlation fades out across TH.

1Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea. 2Max Planck POSTECH/Hsinchu Center for Complex Phase Materials,
POSTECH, Pohang 37673, Republic of Korea. 3Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan. 4Department of
Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan. 5Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of
Korea. 6ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK. 7Highly Correlated Matter Research Group, Physics Department, University of
Johannesburg, PO Box 524, Auckland Park 2006, South Africa. 8Department of Physics, POSTECH, Pohang 37673, Republic of Korea. 9Division of
Advanced Materials Science, POSTECH, Pohang 37673, Republic of Korea. *e-mail: jhp@postech.ac.kr; kchoi@cau.ac.kr; sungdae@postech.ac.kr

NATURE PHYSICS | VOL 13 | NOVEMBER 2017 | www.nature.com/naturephysics 1079

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://dx.doi.org/10.1038/nphys4264
mailto:jhp@postech.ac.kr
mailto:kchoi@cau.ac.kr
mailto:sungdae@postech.ac.kr
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS4264

Conventional paramagnetKitaev paramagnetQuantum spin liquid

T >> THTL < T < THT < TL  

Wp = +1 Wp = −1 Wp = +1
IMF

LMF 

JK
x = JK

y = JK
z

Si
xSl

x

Si
zSj

z

Si
ySk

y

Ru

Cl

Ru

σi

σj

THTL

Spin 
fractionalization

Majorana fermionic
representation

ci

uz
ij

uy
ikux

il

bi
x

bi
y

bi
z

Spin flip
σi
γ

σk

α

σl

a

b

Figure 1 | Kitaev bonding geometry and cartoon of emergent Majorana fermions. a, Local Ru3+ (Je�= 1/2; 4d5) hexagon structure formed by the
edge-shared RuCl6 octahedra, in the layered honeycomb material α-RuCl3. Two 94◦ Ru–Cl–Ru superexchange paths lead to the Kitaev interactions JγKS

γ

i S
γ

j
between two magnetic spins on adjacent i and j sites, and the three di�erent links denoted with γ (=x, y, z) contribute isotropic JK in the rhombohedral
crystal structure. The Pauli spin operators can be represented by σ γi = ibγi ci in terms of localized (bγi ) and itinerant (ci) Majorana fermions in an extended
Hilbert space. The plaquette operatorWp, a product of the bond operators uγij = ibγi b

γ

j around the hexagon, results in the Z2 gauge fluxes of 0 (eigenvalue
wp=+1) and π (wp=−1) in the Kitaev lattice. b, (Left) In very low-temperature T<TL, the Z2-fluxes are almost frozen in the quantum spin liquid ground
state (yellow hexagon) and only low-energy itinerant Majorana fermions (black balls) are thermally activated. As temperature increases, the spin
excitations are thermally fractionalized into itinerant and localized (cyan ovals) Majorana fermions. (Middle) In the intermediate temperature TL<T<TH,
the π-fluxes (red hexagons) become populated by the thermal energy and the itinerant Majorana fermions on the vertices move in a coherent manner. As
temperature crosses over TH, the nearest-neighbour spin–spin correlation is diminished. (Right) Finally, in high temperature T�TH, the system becomes a
conventional paramagnet.

Finally, the system ends in a conventional paramagnetic phase well
above TH.

Figure 2 displays the thermodynamic signatures in the magnetic
susceptibility χ(T ), magnetic specific heat CM and entropy SM for
fractionalized spin excitations. The static χ(T ) of α-RuCl3 deviates
from the Curie–Weiss curve below 140K, indicating the onset of
short-range spin correlations (Fig. 2a). The anomalies in χ(T ) and
CM at TN = 6.5 K represent the onset of zigzag-type AFM order
(Fig. 2a,b). CM is obtained by subtracting the lattice contribution
from the total specific heat (CP) as described in the Supplementary
Information. Besides the sharp anomaly at TN, CM exhibits two
broad maxima, one near TN and the other around TH ≈ 100 K,
although the low-T maximum feature is obscured by the AFM
anomaly. As predicted in theory12,13, the high- and low-T structures
can be ascribed to the thermal excitations of itinerant and localized
Majorana fermions, respectively. It is worth noting that CM follows
a linear T -dependence in the intermediate range TN < T < TH,
reflecting metallic-like behaviour of itinerant Majorana fermions
(inset of Fig. 2b).

Rather firm evidence is provided by the two-stage release of the
entropy gain SM(T )=

∫
CM/TdT (Fig. 2c). The obtained SM at

T=200K is 5.13 Jmol−1 K−1, which corresponds to about 90 % of
the ideal value Rln2 (R: ideal gas constant) of the spin-1/2 system.

Upon cooling, nearly half of the entropy is released stepwise with
the plateau-like behaviour at 0.46Rln2, signifying two maxima of
CM. Indeed, SM(T ) aboveTN agrees well with the simulated sum (red
line) of two phenomenological Schottky-like functions with about
an equal weight (ρH=0.92, ρL=1.08, TH'101K, and TL'22K),
which involve itinerant and localized Majorana fermions in the
QMC simulation (see Supplementary Information). Considering
the predicted temperature ratioTL/TH≈0.03 in the isotropic Kitaev
model, TL would be somewhat lower than TN if the AFM order
were absent. SM involving AFM order below TN was estimated to
be 1.09 Jmol−1 K−1, about 20% of the total entropy Rln2 (40% of
1/2Rln2) (ref. 27), indicating that the entropy held by the AFM
order is partially released and roughly 3/5ths of the frozen Z2-flux is
maintained just above TN.

The microscopic and dynamic properties of the Majorana
fermions can be visualized by the thermally fractionalized spin
excitations obtained from the INS measurements. Figure 3a
shows the neutron scattering function Stot(Q, ω) as a function
of momentum transfer Q and energy transfer ω measured at
T=10K above TN along the X–K–0–M–Y direction. Stot(Q, ω)
at sufficiently low T can be approximated as the magnetic
scattering function Smag(Q, ω) although weak phonon features
are still observable as marked with black stars in the figure
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Figure 2 | Thermodynamic signatures of spin fractionalization.
a, Temperature-dependent static magnetic susceptibility of α-RuCl3 plotted
in a semi-log scale for H‖ab. The susceptibility deviates from the
Curie–Weiss behaviour (solid red line) below T= 140K. The
low-temperature kink at TN=6.5K indicates a zigzag-type AFM order.
b, Magnetic specific heat CM obtained by subtracting the lattice
contribution in a semi-log scale (see Supplementary Information). Besides
the AFM peak at TN, the broad bumps in TN.T.50K and around
T=TH' 100K (vertical bar) are associated with excitations of localized
and itinerant Majorana fermions, respectively. CM exhibits a T-linear
dependence in the intermediate temperature 50K.T.TH, as shown in
the inset, reflecting metal-like density of states of the itinerant Majorana
fermions. The spike at 165 K is due to a structural phase transition.
c, Magnetic entropy change, integrated CM, in the temperature range
2K<T<200K. The horizontal solid lines represent the expected total
entropy change Rln2 and its half value (R/2)ln2. The solid red line is a sum
of two phenomenological function fits based on the theoretical simulation,
indicating that the entropy release is decomposed into two fermionic
components (yellow and green shadings), as described in the
Supplementary Information.

(see Supplementary Information). Stot(Q, ω) displays an hour-
glass shape spectrum centred at the 0-point extending to about
20meV with strong low-energy excitations around the 0-point

and high-energy Y-shaped excitations. Similar features are repro-
duced in the simulated spectra of the isotropic Kitaev model
with a FM Kitaev interaction JK = −16.5 meV by using the
CDMFT + continuous-time QMC method14 (see Fig. 3b). It is
worth noting that the spectral centre would move to the M-point
for an AFM JK (>0) (ref. 14). The low-energy feature represents
the quasielastic responses associated with the flux excitations, and
the Y-shaped Q-ω dependence in the high-energy region reflects
the dispersive itinerant Majorana fermions extending to ω∼ |JK|
(refs 11,14). Both features are also clearly observable in the constant-
energy cuts Stot(Q), which also agree well with the theoretical calcu-
lations (Fig. 3c). According to the simulation, the excitation energy
of the itinerantMF at the K- andM-points corresponds to Kitaev JK.
Stot(Q) data (Fig. 3d) are again compared with the simulated values
(Fig. 3e) in 2D reciprocal space (Fig. 3f). The overall features are
well reproduced by the simulations, except the hexagram-shaped
Q-dependence of the low-energy Stot(Q) (ω. 6meV), indicating
that the key character of the Majorana fermions is rather robust.
The hexagram-shaped Q-dependence is considered to be induced
by the second nearest-neighbour Kitaev interactions28 and/or sym-
metric anisotropy exchange interactions29,30 involving direct Ru–Ru
electron hopping, both of which are not considered in the pure Ki-
taev model. These interactions are weak, but become important at
low energies and temperatures.

Figure 4a,b presents the thermal evolution of the experimental
and simulated Smag(Q,ω) (see Methods), respectively. At T=16K,
the hour-glass shape spectrum is maintained with minor reduction
in the overall intensity. Upon heating up to TH ∼ 100 K (Kitaev
paramagnetic phase), the low-energy intensity involving localized
Majorana fermions is significantly reduced while the high-energy
intensity from itinerant Majorana fermions is almost maintained,
although the dichotomic feature becomes smeared with increasing
thermal fluctuations. Further heating across TH causes the high-
energy intensity to begin to decrease considerably. Well above
TH(T = 240 K), Smag(Q, ω) exhibits only a featureless low back-
ground as in conventional paramagnets. The evolution of localized
and itinerant Majorana fermions with temperature are visualized in
the temperature–energy contour plots of Smag around the 0-point,
as presented in Fig. 4c (experiment) and 4d (simulation). The low-
energy excitations below ω≈ 4 meV appear at T . TH while the
high-energy excitations extend out to ω∼|JK|. This is also evident
from the Smag(0, ω) plots in Fig. 4e, which are consistent with
the simulations.

The quantitative agreement between the experiment and the
simulation is also excellent in the INS intensities for the low-
and high-energy excitations in an overall temperature range, as
shown in Fig. 4f,g, presenting the temperature dependences of the
corresponding integrations

∫
Smag(0, ω)dω. Meanwhile, one also

notices that the experiment deviates somewhat from the simu-
lation below ∼50K only in the integration involving the low-
energy excitations (Fig. 4f). This is probably due to the presence
of the additional perturbing magnetic interactions in the real sys-
tem, whose influence might be apparent in the low-energy scale
to be detrimental to the low-energy flux excitations at low tem-
perature. Those perturbing interactions contribute the hexagram-
shaped Q-dependence in the low-energy Smag(Q) (see Fig. 3d),
which becomes isotropic above ∼50K, as expected in the Kitaev
model (see Supplementary Information).

Tracing the magnetic entropy and evolution of the spin
excitations as a function of temperature, energy, and momen-
tum, we provide strong evidence for thermal fractionalization to
Majorana fermions of spin excitations. α-RuCl3 is well described
in the ferromagnetic Kitaev model and is proximate to the Kitaev
QSL. The key features of the thermal fractionalization predicted in
the pure Kitaev model are reproduced well in the thermodynamic
and spectroscopic results, although AFM order is developed below
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Figure 3 | Magnetic excitation spectra of α-RuCl3 compared with the theoretical calculations on a ferromagnetic Kitaev model. a, Neutron scattering
function Stot(Q,ω) at T= 10K along the high symmetric line X–K–0–M–Y through Brillouin zone. The data were collected with an incoming neutron energy
of Ei=31meV (MERLIN). The black stars mark phonons (see Supplementary Information). b, Calculated magnetic scattering function Smag(Q,ω) for a
ferromagnetic Kitaev model at T=0.06|JK|. c, Constant-energy cuts integrated over the energy ranges [3, 5], [5, 7], [8, 10], [11, 13], [14, 16], and
[17, 19] meV along the X–K–0 and 0–M–Y directions (left y-axis). The dashed lines guide vertical o�sets. The solid lines present the theoretical calculations
of the pure Kitaev model (right y-axis). Error bars represent one standard deviation. d, Constant-energy cuts in the (hk)-plane integrated over the energy
ranges [1.5, 2.5], [4, 6] (LET, Ei= 10meV), [9, 12] (LET, Ei=22meV), and [16, 19] meV (MERLIN, Ei=31meV). e, Constant-energy cuts of the theoretical
Smag(Q) in the Kitaev model for comparison. f, The reciprocal honeycomb lattice in the R3̄ space group. The X–K–0 and 0–M–Y directions are presented
with the red arrows. The white regions in a,dmark the lack of detector coverage. The colour bars in a,d are represented in units of mbarn sr−1 meV−1 per
Ru. The calculations presented in b,e are dimensionless, with the scale given by the colour bar.

TN=6.5K and additional perturbing magnetic interactions deteri-
orate QSL behaviour, especially in the low-energy scale. When the
temperature is higher than the energy scale related to the perturbing
magnetic interactions, the two distinctMajorana fermions predicted
in the Kitaev honeycomb model are unveiled. This finding lays a
cornerstone for an in-depth understanding of emergent Majorana
quasiparticles in condensed matter, and also possibly for future
implementation in quantum computations.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Figure 4 | Evolution of the twoMajorana fermion excitations. a, Magnetic scattering function Smag(Q,ω) at T= 16, 75, 125, and 240K. The two data
sets with an incoming neutron energy of Ei=22meV (upper panel) and 10meV (down panel) are combined together. The white regions mark the
lack of detector coverage. b, Calculated Smag(Q,ω) at T=0.09, 0.375, 0.69, and 1.32|JK| with JK=−16.5meV for comparison with the experimental
data. c,d, Comparison of contour plot of the experimental Smag(0,ω) and the calculated Smag(0,ω) in the temperature–energy plane. e, Smag(0,ω) at
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Methods
Crystal growth.High-quality single crystals of α-RuCl3 and their isostructural
counterpart ScCl3 were grown by a vacuum sublimation method. A commercial
RuCl3 (ScCl3) powder (Alfa Aesar) was thoroughly ground, and dehydrated in a
quartz ampoule for a day. The ampoule was sealed in vacuum and placed in a
temperature gradient furnace. The temperature of the RuCl3 (ScCl3) powder is set
at 1,080 ◦C (900 ◦C). After dwelling for 5 h, the furnace is cooled to 650 ◦C (600 ◦C)
at a rate of−2 ◦C per hour. We obtained α-RuCl3 (ScCl3) crystals black coloured
(transparent) with shiny surfaces. Electron-dispersive X-ray measurements
confirmed the stoichiometry of the Ru(Sc):Cl= 1:3 ratio for the crystals.

Magnetic susceptibility and specific heat measurement.Magnetic susceptibility
measurements were performed using a commercial superconducting quantum
interference device (SQUID) (Quantum Design, model: MPMS-5XL). A single
domain crystal (3× 3× 1mm3, 20mg) was chosen for the measurements under
an external magnetic field parallel to the ab-plane. Specific heat CP was measured
by using a conventional calorimeter of the Quantum Design Physical Property
Measurement System (model: PPMS DynaCool) in a temperature range of
T=1.8–300K. The magnetic specific heat CM of α-RuCl3 was determined by
subtracting the lattice contribution, which is supposed to be equivalent to the
specific heat of the isostructural non-magnetic ScCl3 with mass scaling
(see Supplementary Information).

Inelastic neutron scattering. Inelastic neutron scattering data were collected by
using the time-of-flight spectrometers MERLIN (high intensity) and LET (high
resolution) at the ISIS Spallation Neutron Source, the Rutherford Appleton
Laboratory in the United Kingdom. Total 46 pieces (∼1.35 g) of α-RuCl3 single
crystals for MERLIN, and 153 pieces (∼5.1 g) for LET were prepared, and
co-aligned with crystallographic c-axis surface normal on aluminium plates,
resulting in a mosaic within 3◦ (Supplementary Fig. 1). The samples were mounted
in a liquid helium cryostat for temperature control ranging from 1.5 K to 270K.
Due to the highly two-dimensional structure of α-RuCl3, magnetic correlations
between honeycomb layers are extremely weak and insensitive. Therefore, crystals
are aligned with the c-axis parallel to the incident neutron beam, so that the area
detector measures the energy spectrum over the 2D q-space of the hk-plane. To
observe the intensity at the 0-point (LET measurement), we rotated the crystal by
30 degrees to the incident beam direction, so that it filled the blank region of the
beam mask.

Data were obtained with the incident neutron energy set to Ei=5.66, 10, 22
(LET), and 31meV (MERLIN). With incoherent neutron scattering intensity

measured from a vanadium standard sample, all data were normalized and
converted to the value of the neutron scattering function Stot(Q,ω), which is
proportional to the differential neutron cross-section (d2σ)/(dΩdE) and the ratio
of the incident to the scattered neutron wavevector ki/kf (ref. 31),

Stot(Q,ω)∼
ki
kf

d2σ

dΩdE
(1)

Since Stot(Q,ω) contains both the nuclear and magnetic scattering contributions,
the magnetic scattering function Smag(Q,ω)T at temperature T in Fig. 4 is
extracted from Stot(Q,ω)T after subtraction of the scaled Stot(Q,ω)T0=290K with the
Bose factor correction n (T )/n(T0)= (1−e−}ω/kBT0 )/(1−e−}ω/kBT ), which
represents the approximate phonon contribution in the experiment.

Smag(Q,ω)T≈Stot(Q,ω)T−
n (T )
n (T0)

Stot(Q,ω)T0 (2)

All of the data processes, including Bose factor correction and projection of the
scattering function along appropriate directions, were performed using the
HORACE software, which is published by ISIS32.

Calculation of the magnetic scattering function. The calculation of Smag(Q,ω)T
is performed by using the CDMFT+ continuous-time QMCmethod as described
in ref. 15. The Bose factor correction of the equation (2) is also applied to the
simulation results for quantitative comparison with the experimental results in
Fig. 4. All calculated results include the magnetic form factor of the Ru3+ ion,
which is obtained by using the density functional theory method considering
solid-state effects in α-RuCl3, as described in the Supplementary Information.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.
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