Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimentally probing topological order and its breakdown through modular matrices

Abstract

The modern concept of phases of matter has undergone tremendous developments since the first observation of topologically ordered states in fractional quantum Hall systems in the 1980s. In this paper, we explore the following question: in principle, how much detail of the physics of topological orders can be observed using state of the art technologies? We find that using surprisingly little data, namely the toric code Hamiltonian in the presence of generic disorders and detuning from its exactly solvable point, the modular matrices—characterizing anyonic statistics that are some of the most fundamental fingerprints of topological orders—can be reconstructed with very good accuracy solely by experimental means. This is an experimental realization of these fundamental signatures of a topological order, a test of their robustness against perturbations, and a proof of principle—that current technologies have attained the precision to identify phases of matter and, as such, probe an extended region of phase space around the soluble point before its breakdown. Given the special role of anyonic statistics in quantum computation, our work promises myriad applications both in probing and realistically harnessing these exotic phases of matter.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometrical diagrams of the modular S and T transformations.
Figure 2: Kitaev toric code model on a torus.
Figure 3: Physical realizations of the modular S and T transformations on a 2 × 2 torus.
Figure 4: Physical system and quantum circuit for measuring the modular matrices.
Figure 5: Energy-level diagram of Hamiltonian (4) and experimental results of standard modular S and T matrices in different homogeneous magnetic field.

Similar content being viewed by others

References

  1. Landau, L. D. Theory of phase transformations. Phys. Zs. Sowjet. 11, 26 (1937).

    Google Scholar 

  2. Ginzburg, V. L. & Landau, L. D. On the theory of superconductivity. J. Exp. Eheor. Phys. 20, 1064–1082 (1950).

    Google Scholar 

  3. Wen, X. G. Topological orders in rigid states. Int. J. Mod. Phys. B. 4, 239–271 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  4. Wen, X. G. Quantum Field Theory of Many-Body Systems (Oxford Univ. Press, 2004).

    Google Scholar 

  5. Wen, X. G. & Niu, Q. Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. Phys. Rev. B 41, 9377–9396 (1990).

    Article  ADS  Google Scholar 

  6. Chen, X., Gu, Z. C. & Wen, X. G. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B. 82, 155138 (2010).

    Article  ADS  Google Scholar 

  7. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  ADS  Google Scholar 

  8. Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  9. Jiang, H. C., Wang, Z. H. & Balents, L. Identifying topological order by entanglement entropy. Nat. Phys. 8, 902–905 (2012).

    Article  Google Scholar 

  10. Keski-Vakkuri, E. & Wen, X. G. Ground state structure of hierarchical QH states on torus and modular transformation. Int. J. Mod. Phys. B. 07, 4227–4259 (1993).

    Article  ADS  Google Scholar 

  11. Wen, X. G. Modular transformation and bosonic/fermionic topological orders in Abelian fractional quantum Hall states. Preprint at http://arXiv.org/abs/1212.5121 (2012).

  12. Zhang, Y., Grover, T., Turner, A., Oshikawa, M. & Vishwanath, A. Quasiparticle statistics and braiding from ground-state entanglement. Phys. Rev. B. 85, 235151 (2012).

    Article  ADS  Google Scholar 

  13. Zaletel, M. P., Mong, R. S. K. & Pollmann, F. Topological characterization of fractional quantum Hall ground states from microscopic hamiltonians. Phys. Rev. Lett. 110, 236801 (2013).

    Article  ADS  Google Scholar 

  14. Bonderson, P., Shtengel, K. & Slingerland, J. K. Probing non-Abelian statistics with quasiparticle interferometry. Phys. Rev. Lett. 97, 016401 (2006).

    Article  ADS  Google Scholar 

  15. Cincio, L. & Vidal, G. Characterizing topological order by studying the ground states on an infinite cylinder. Phys. Rev. Lett. 110, 067208 (2013).

    Article  ADS  Google Scholar 

  16. Mei, J. W. & Wen, X. G. Modular matrices from universal wave-function overlaps in Gutzwiller-projected parton wave functions. Phys. Rev. B 91, 125123 (2015).

    Article  ADS  Google Scholar 

  17. Moridi, H. & Wen, X. G. Universal wave-function overlap and universal topological data from generic gapped ground states. Phys. Rev. Lett 115, 036802 (2015).

    Article  ADS  Google Scholar 

  18. Liu, F. Z., Wang, Z. H., You, Y. Z. & Wen, X. G. Modular transformations and topological orders in two dimensions. Preprint at http://arXiv.org/abs/1303.0829v2 (2014).

  19. Li, K. et al. Experimental identification of non-Abelian topological orders on a quantum simulator. Phys. Rev. Lett. 118, 080502 (2017).

    Article  ADS  Google Scholar 

  20. Jiang, S. H., Mesaros, A. & Ran, Y. Generalized modular transformations in (3+1)D topologically ordered phases and triple linking invariant of loop braiding. Phys. Rev. X. 4, 031048 (2014).

    Google Scholar 

  21. He, H., Moradi, H. & Wen, X. G. Modular matrices as topological order parameter by gauge symmetry preserved tensor renormalization approach. Phys. Rev. B 90, 205114 (2014).

    Article  ADS  Google Scholar 

  22. Mei, J. W., Chen, J. Y., He, H. & Wen, X. G. SU(2) spin-rotation symmetric tensor network state for spin-1/2 Heisenberg model on kagome lattice and its modular matrices. Phys. Rev. B 95, 235107 (2017).

    Article  ADS  Google Scholar 

  23. Bridgeman, J. C., Flammia, S. T. & Poulin, D. Detecting topological order with ribbon operators. Phys. Rev. B. 94, 205123 (2016).

    Article  ADS  Google Scholar 

  24. Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. (N. Y.) 303, 2–30 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  25. Trebst, S., Werner, P., Troyer, M., Shtengel, K. & Nayak, C. Breakdown of a topological phase: quantum phase transition in a loop gas model with tension. Phys.Rev. Lett. 98, 070602 (2007).

    Article  ADS  Google Scholar 

  26. Dusuel, S., Kamfor, M., Orus, R., Schmidt, K. P. & Vidal, J. Robustness of a perturbed topological phase. Phys. Rev. Lett. 106, 107203 (2011).

    Article  ADS  Google Scholar 

  27. Wen, X. G. Quantum orders in an exact soluble model. Phys. Rev. Lett. 90, 016803 (2003).

    Article  ADS  Google Scholar 

  28. Ryan, C. A., Negrevergne, C., Laforest, M., Knill, E. & Laflamme, R. Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods. Phys. Rev. A. 78, 012328 (2008).

    Article  ADS  Google Scholar 

  29. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  MathSciNet  Google Scholar 

  30. Shankar, R., Hegde, S. S. & Mahesh, T. S. Quantum simulation of a particle in one-dimensional potentials using NMR. Phys. Lett. A. 378, 10–15 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  31. Dong, R. Y. Nuclear Magnetic Resonance of Liquid Crystals (Springer, 1997).

    Book  Google Scholar 

  32. Luo, Z. H. et al. Experimental preparation of topologically ordered states via adiabatic evolution. Preprint at http://arXiv.org/abs/1608.06963v1 (2016).

  33. Peng, X. H. et al. Preparation of pseudo-pure states by line-selective pulses in nuclear magnetic resonance. Chem. Phys. Lett. 340, 509–516 (2001).

    Article  ADS  Google Scholar 

  34. Messiah, A. Quantum Mechanics (Wiley, 1976).

    MATH  Google Scholar 

  35. Hamma, A. & Lidar, D. A. Adiabatic preparation of topological order. Phys. Rev. Lett. 100, 030502 (2008).

    Article  ADS  Google Scholar 

  36. Rowell, E., Stong, R. & Wang, Z. H. On classification of modular tensor categories. Comm. Math. Phys. 292, 343–389 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  37. Vandersypen, L. M. et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank X. Wen and B. Zeng for helpful discussions. This work is supported National Key Basic Research Program of China (Grant No. 2013CB921800 and No. 2014CB848700), the National Science Fund for Distinguished Young Scholars (Grant No. 11425523), the National Natural Science Foundation of China (Grants No. 11375167, No. 11227901, No. 11575173, and No. 91021005), the Strategic Priority Research Program (B) of the CAS (Grant No. XDB01030400) and Key Research Program of Frontier Sciences of the CAS (Grant No. QYZDY-SSW-SLH004). Y.W. acknowledges support from the John Templeton foundation No. 39901. This research was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science. Y.W. is also supported by the Shanghai Pujiang Program Grant No. KBH 1512328. L.-Y.H. would like to acknowledge support by the Thousand Young Talents Program, and Fudan University.

Author information

Authors and Affiliations

Authors

Contributions

X.P. initiated the project. L.-Y.H. and Y.W. formulated the theory. X.P. and Z.L. designed the experiment. Z.L. and L.-Y.H. performed the calculation. Z.L. carried out the experiment and analysed the data. X.P. and J.D. supervised the experiment. Z.L. and L.-Y.H. wrote the draft. All authors contributed to discussing the results and writing the manuscript.

Corresponding authors

Correspondence to Ling-Yan Hung, Yidun Wan or Xinhua Peng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2050 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Li, J., Li, Z. et al. Experimentally probing topological order and its breakdown through modular matrices. Nat. Phys. 14, 160–165 (2018). https://doi.org/10.1038/nphys4281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing