Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum gas microscopy of an attractive Fermi–Hubbard system

Abstract

The attractive Fermi–Hubbard model is the simplest theoretical model for studying pairing and superconductivity of fermions on a lattice. It exhibits many interesting features including a short-coherence length at intermediate coupling and a pseudogap regime with anomalous properties. Here we study an experimental realization of this model using a two-dimensional (2D) atomic Fermi gas in an optical lattice. Using a new technique for selective imaging of doublons with a quantum gas microscope, we observe chequerboard doublon density correlations in the normal state close to half-filling. With the aid of quantum Monte Carlo simulations, we show that the measured doublon density correlations allow us to put a lower bound on the strength of s-wave pairing correlations in our system. We compare the temperature sensitivity of the doublon density correlations and the paired atom fraction and find the correlations to be a much better thermometer. Accurate thermometry of attractive lattice systems will be essential in the quest for optimizing cooling schemes to reach superfluid phases in future experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme for detecting densities and density correlations.
Figure 2: Observation of doublon density correlations.
Figure 3: Doublon density correlation matrices for varying density.
Figure 4: Thermometry of an attractive Hubbard system.

Similar content being viewed by others

References

  1. Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238–257 (1963).

    Article  ADS  Google Scholar 

  2. Micnas, R., Ranninger, J. & Robaszkiewicz, S. Superconductivity in narrow-band systems with local nonretarded attractive interactions. Rev. Mod. Phys. 62, 113–171 (1990).

    Article  ADS  Google Scholar 

  3. Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, 1994).

    Book  Google Scholar 

  4. Scalettar, R. T. et al. Phase diagram of the two-dimensional negative-U Hubbard model. Phys. Rev. Lett. 62, 1407–1410 (1989).

    Article  ADS  Google Scholar 

  5. Singer, J. M., Pedersen, M. H., Schneider, T., Beck, H. & Matuttis, H.-G. From BCS-like superconductivity to condensation of local pairs: a numerical study of the attractive Hubbard model. Phys. Rev. B 54, 1286–1301 (1996).

    Article  ADS  Google Scholar 

  6. Randeria, M., Trivedi, N., Moreo, A. & Scalettar, R. T. Pairing and spin gap in the normal state of short coherence length superconductors. Phys. Rev. Lett. 69, 2001–2004 (1992).

    Article  ADS  Google Scholar 

  7. Trivedi, N. & Randeria, M. Deviations from Fermi-liquid behavior above T c in 2D short coherence length superconductors. Phys. Rev. Lett. 75, 312–315 (1995).

    Article  ADS  Google Scholar 

  8. Kyung, B., Allen, S. & Tremblay, A.-M. S. Pairing fluctuations and pseudogaps in the attractive Hubbard model. Phys. Rev. B 64, 075116 (2001).

    Article  ADS  Google Scholar 

  9. Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    Article  ADS  Google Scholar 

  10. Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).

    Article  ADS  Google Scholar 

  11. Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013).

    Article  ADS  Google Scholar 

  12. Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).

    Article  ADS  Google Scholar 

  13. Parsons, M. F. et al. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model. Science 353, 1253–1256 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Cheuk, L. W. et al. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model. Science 353, 1260–1264 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Boll, M. et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains. Science 353, 1257–1260 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Brown, P. T. et al. Spin-imbalance in a 2D Fermi-Hubbard system. Science 357, 1385–1388 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cocchi, E. et al. Equation of state of the two-dimensional Hubbard model. Phys. Rev. Lett. 116, 175301 (2016).

    Article  ADS  Google Scholar 

  18. Drewes, J. H. et al. Antiferromagnetic correlations in two-dimensional fermionic Mott-insulating and metallic phases. Phys. Rev. Lett. 118, 170401 (2017).

    Article  ADS  Google Scholar 

  19. Strohmaier, N. et al. Interaction-controlled transport of an ultracold Fermi gas. Phys. Rev. Lett. 99, 220601 (2007).

    Article  ADS  Google Scholar 

  20. Hackermüller, L. et al. Anomalous expansion of attractively interacting fermionic atoms in an optical lattice. Science 327, 1621–1624 (2010).

    Article  ADS  Google Scholar 

  21. Schneider, U. et al. Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms. Nat. Phys. 8, 213–218 (2012).

    Article  Google Scholar 

  22. Inguscio, M., Ketterle, W. & Salomon, C. (eds) Ultra-cold Fermi Gases, Proceedings of the International School of Physics “Enrico Fermi”, Course CLXIV, Varenna 2006 922 (IOS Press, 2008).

  23. Chin, J. K. et al. Evidence for superfluidity of ultracold fermions in an optical lattice. Nature 443, 961–964 (2006).

    Article  ADS  Google Scholar 

  24. Duan, L.-M. Effective Hamiltonian for fermions in an optical lattice across a Feshbach resonance. Phys. Rev. Lett. 95, 243202 (2005).

    Article  ADS  Google Scholar 

  25. Carr, L. D. & Holland, M. J. Quantum phase transitions in the Fermi–Bose Hubbard model. Phys. Rev. A 72, 031604 (2005).

    Article  ADS  Google Scholar 

  26. Zhou, F. Mott states under the influence of fermion-boson conversion. Phys. Rev. B 72, 220501 (2005).

    Article  ADS  Google Scholar 

  27. Diener, R. B. & Ho, T.-L. Fermions in optical lattices swept across Feshbach resonances. Phys. Rev. Lett. 96, 010402 (2006).

    Article  ADS  Google Scholar 

  28. Hirsch, J. E. Two-dimensional Hubbard model: numerical simulation study. Phys. Rev. B 31, 4403–4419 (1985).

    Article  ADS  Google Scholar 

  29. Moreo, A. & Scalapino, D. J. Two-dimensional negative-U Hubbard model. Phys. Rev. Lett. 66, 946–948 (1991).

    Article  ADS  Google Scholar 

  30. Paiva, T., dos Santos, R. R., Scalettar, R. T. & Denteneer, P. J. H. Critical temperature for the two-dimensional attractive Hubbard model. Phys. Rev. B 69, 184501 (2004).

    Article  ADS  Google Scholar 

  31. Yang, C. N. & Zhang, S. C. SO4 symmetry in a Hubbard model. Mod. Phys. Lett. B 04, 759–766 (1990).

    Article  ADS  Google Scholar 

  32. Ho, A. F., Cazalilla, M. A. & Giamarchi, T. Quantum simulation of the Hubbard model: the attractive route. Phys. Rev. A 79, 033620 (2009).

    Article  ADS  Google Scholar 

  33. Haller, E. et al. Single-atom imaging of fermions in a quantum-gas microscope. Nat. Phys. 11, 738–742 (2015).

    Article  Google Scholar 

  34. Edge, G. J. A. et al. Imaging and addressing of individual fermionic atoms in an optical lattice. Phys. Rev. A 92, 063406 (2015).

    Article  ADS  Google Scholar 

  35. Omran, A. et al. Microscopic observation of Pauli blocking in degenerate fermionic lattice gases. Phys. Rev. Lett. 115, 263001 (2015).

    Article  ADS  Google Scholar 

  36. Parsons, M. F. et al. Site-resolved imaging of fermionic 6Li in an optical lattice. Phys. Rev. Lett. 114, 213002 (2015).

    Article  ADS  Google Scholar 

  37. Cheuk, L. W. et al. Quantum-gas microscope for fermionic atoms. Phys. Rev. Lett. 114, 193001 (2015).

    Article  ADS  Google Scholar 

  38. Yamamoto, R., Kobayashi, J., Kuno, T., Kato, K. & Takahashi, Y. An ytterbium quantum gas microscope with narrow-line laser cooling. New J. Phys. 18, 023016 (2016).

    Article  ADS  Google Scholar 

  39. Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550–A563 (1964).

    Article  ADS  Google Scholar 

  40. Larkin, A. I. & Ovchinnikov, Yu. N. Nonuniform state of superconductors. Sov. Phys. JETP 20, 762–769 (1965).

    Google Scholar 

  41. Mitra, D., Brown, P. T., Schauß, P., Kondov, S. S. & Bakr, W. S. Phase separation and pair condensation in a spin-imbalanced 2D Fermi gas. Phys. Rev. Lett. 117, 093601 (2016).

    Article  ADS  Google Scholar 

  42. Varney, C. N. et al. Quantum Monte Carlo study of the two-dimensional fermion Hubbard model. Phys. Rev. B 80, 075116 (2009).

    Article  ADS  Google Scholar 

  43. Demler, E., Zhang, S.-C., Bulut, N. & Scalapino, D. J. A class of collective excitations of the Hubbard model: η excitation of the negative-U model. Int. J. Mod. Phys. B 10, 2137–2166 (1996).

    Article  ADS  Google Scholar 

  44. Moreo, A. & Scalapino, D. J. Cold attractive spin polarized Fermi lattice gases and the doped positive U Hubbard model. Phys. Rev. Lett. 98, 216402 (2007).

    Article  ADS  Google Scholar 

  45. Loh, Y. L. & Trivedi, N. Detecting the elusive Larkin–Ovchinnikov modulated superfluid phases for imbalanced Fermi gases in optical lattices. Phys. Rev. Lett. 104, 165302 (2010).

    Article  ADS  Google Scholar 

  46. Kim, D.-H. & Törmä, P. Fulde–Ferrell–Larkin–Ovchinnikov state in the dimensional crossover between one- and three-dimensional lattices. Phys. Rev. B 85, 180508 (2012).

    Article  ADS  Google Scholar 

  47. Gukelberger, J., Lienert, S., Kozik, E., Pollet, L. & Troyer, M. Fulde–Ferrell–Larkin–Ovchinnikov pairing as leading instability on the square lattice. Phys. Rev. B 94, 075157 (2016).

    Article  ADS  Google Scholar 

  48. Zürn, G. et al. Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110, 135301 (2013).

    Article  ADS  Google Scholar 

  49. Idziaszek, Z. & Calarco, T. Two atoms in an anisotropic harmonic trap. Phys. Rev. A 71, 050701 (2005).

    Article  ADS  Google Scholar 

  50. Zhang, S. Pseudospin symmetry and new collective modes of the Hubbard model. Phys. Rev. Lett. 65, 120–122 (1990).

    Article  ADS  Google Scholar 

  51. Assmann, E., Chiesa, S., Batrouni, G. G., Evertz, H. G. & Scalettar, R. T. Superconductivity and charge order of confined Fermi systems. Phys. Rev. B 85, 014509 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF (grant no. DMR-1607277), the David and Lucile Packard Foundation (grant no. 2016-65128), and the AFOSR Young Investigator Research Program (grant no. FA9550-16-1-0269). W.S.B. was supported by an Alfred P. Sloan Foundation fellowship. P.T.B. was supported by the DoD through the NDSEG Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Waseem S. Bakr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, D., Brown, P., Guardado-Sanchez, E. et al. Quantum gas microscopy of an attractive Fermi–Hubbard system. Nat. Phys. 14, 173–177 (2018). https://doi.org/10.1038/nphys4297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing