
Much has been written on the subject of managing 
innovation in the pharmaceutical industry1–4. However, 
given that the discovery of new drugs often arises from 
foundational academic research5–7, the challenge could 
be reframed as one of effectively recognizing proximal 
drivers of innovation. It would be advantageous to the 
drug discovery process to be able to systematically iden-
tify therapeutic areas, specific diseases or pathways in 
which basic scientific understanding is increasing  
rapidly, and in a manner that is likely to enable new inter-
ventions. This could guide the long-term investment  
that is necessary to build capabilities in those areas, and 
possibly help in recognizing near-term opportunities. 
Such assessments are typically made in a subjective and 
intuitive fashion and, although nothing can replace 
professional vigilance and the wisdom of experience, 
expert judgments might benefit from objective metrics 
and models8. Even marginal improvements could be 
highly beneficial when applied over large drug discovery  
portfolios.

Unmet medical need and commercial potential, 
which are considered the traditional drivers of drug 
discovery, may be seen as providing ‘pull’ for pharma-
ceutical discovery efforts. Yet, if a disease area offers 
no ‘push’ in the form of new scientific opportunities, 
no amount of pull will lead to new drugs — at least 
not mechanistically novel ones. The trend among payers 
and health-care providers to require such novelty sug-
gests greater weight should be placed on push in deter-
mining investment, and it is becoming clear that even 
purely commercial considerations favour innovation4. 
Moreover, in the post-genomic era, the identification 

of areas of rapid scientific advance will grow in impor-
tance as the emphasis shifts from target identification 
to a deeper understanding of targets in the full disease 
context6.

Measuring push
Various factors can influence scientific innovation in 
the context of drug discovery, and several of these can 
be tracked over time (FIG. 1). An obvious contributor to 
the development of science is public investment — as 
reflected, for example, in the annual budget of the US 
National Institutes of Health (NIH), which covers inter-
nal expenditures and external grants, and therefore a 
large proportion of US biomedical-research funding. 
Another factor is the available pool of scientists, to 
measure which we can tally the number of doctorates 
awarded by US universities in biology and chemistry, 
as tracked by the US National Science Foundation (the 
National Science Foundation Science and Engineering 
Statistics; see Further information). Publication may be 
seen as an overall measure of scientific activity (BOX 1), 
and this can be established by counting the number 
of articles retrieved from the PubMed database under 
various selection criteria, such as year of publication. 
Finally, the ultimate metric of interest is the number of 
novel marketed drugs, which can be assessed in terms 
of annual approvals of new molecular entities (NMEs) 
by the US Food and Drug Administration (FDA). These 
measures are by no means perfect (being, for example,  
highly United States-centric), but they have the advantage 
that reasonably consistent data are publicly available over 
many decades (FIG. 1), whereas most other trend analyses 
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are conducted over much shorter time frames and often 
use proprietary or estimated data — for example,  
on overall industry investment9.

In this broad perspective, it is not surprising to see 
a general upward trend in all measures, albeit with 
notable variations. It is instructive to examine these 
variations when considering the relationships between 
the measures. For example, like the rest of US govern-
ment investment in science and engineering in the late 
1950s, NIH funding increased sharply at this time. In 
the following decade there was a rapid growth in the 
number of doctorates awarded, which peaked sharply 
around 1971 and then subsided into nearly two decades 
of stasis. However, the period of most rapid growth in 
the number of Ph.D.s awarded corresponded to con-
stant NIH budgets (adjusted for inflation), illustrating  
the difficulty of evaluating cause and effect among 
such measures. whether the increases in funding and 
Ph.D.s arose from the same direct stimulus, or the avail-
ability of funding influenced the awarding of Ph.D.s, it 
is not surprising that there should be several years’ lag 
in the number of Ph.D.s awarded relative to funding, 
given the time required for a doctoral education. Such 
a hypothesis might account for the evident ‘overshoot’ 
in the number of Ph.D.s awarded. However, it is also  

possible that external confounding variables contributed 
to one or both trends, including factors such as inflation 
(reflecting the general business environment), competing 
spending on new government health initiatives at the 
time — such as Medicare and Medicaid — and even 
military conflict, which may have influenced graduate 
school enrolment and research budgets10.

The number of Ph.D.s awarded returned to a nearly 
constant level in recent years, while NIH funding under-
went its steepest increases, and then increased again 
when NIH budgets began to decline. Again, this may 
be due in part to a natural time lag between these two 
variables. In addition, some careers may have been 
more attractive during the economic boom times of the  
‘dot-com bubble’, and others more attractive after the 
bubble burst. once again, it is apparent that interpreting 
such metrics is complicated by the likelihood of time 
lags in any relationship between them, as well as by 
the confounding effects of external events that are not 
directly observed; both of these phenomena are familiar 
in the practice of time series analysis, as performed by 
engineers, economists and others11.

Publication rates also began an upward trend around 
1960, but this trend has continued monotonically and 
with less short-term variation to the present day. The 
number of publications doubled during the 1960s, but 
this does not seem to have fully reflected either the 
sharp increase or the subsequent decline in the number 
of Ph.D.s awarded during this time. However, if it is 
assumed that the publication of results from a scientific 
project follow several years after its original funding, 
the curves for NIH funding and Pubmed counts seem 
to track each other — although again, publication rates 
seem to be buffered against the short-term vagaries 
of funding.

Much has been made of the recent downward trend 
in the number of FDA approvals, which began in the 
mid to late 1990s. This has famously run counter to 
sharp increases in pharmaceutical r&D investment9 and 
public funding, illustrated in FIG. 1 (with the exception 
of the recent decline in public funding). Although the 
decrease in NME approvals does coincide with a period 
in which Ph.D. production was constant, the lag times 
involved — for example, in bringing a drug from a foun-
dational scientific discovery to the point of approval — 
would seem to preclude an immediate relationship of 
FDA approvals to any of the variables in FIG. 1. rather, 
a number of explanations have been proposed, ranging 
from basic flaws in r&D strategies such as over-reliance 
on genomics, to the introduction of more stringent 
standards of drug approval bodies12.

Although there are likely to be confounding external  
influences, we note the following points regarding the 
long-term trend. First, the smaller number of data 
points for FDA approvals makes it inevitable that there 
will be greater statistical variance in this measure than 
in the others observed here. If, for example, the spike 
in approvals in 1996 is discarded as an outlier, the gen-
eral upward trend can be viewed as continuing at least 
until the year 2000. Second, until 2000, there were at 
least three decades during which NME approvals seem 

Figure 1 | NiH funding, us biology and chemistry doctorates awarded, PubMed 
publications and FDA NMe approvals by year. Data are presented as multiples of the 
values in the year 2000, which are given in the inset key. national institutes of Health 
(niH) funding data (green triangles) were taken from REF. 54 and adjusted for inflation. 
Doctorates awarded in the Us in either biology or chemistry (orange circles) were taken 
from REFS 55,56. Publications data (red squares) were determined by counts of articles 
returned by PubMed when restricted to individual years by the standard filter function 
for publication date. Us Food and Drug Administration (FDA) approvals of new molecular 
entities (nMEs) (blue diamonds) were determined using the Drug Approval Reports  
form on the Us FDA Center for Drug Evaluation and Research website (see Further 
information). The number of nME approvals was determined from the tables based on 
the ‘new Drug Application Chemical Type’ column entries. When multiple approvals of 
the same compound in different formulations occured in the same month, these were 
counted only once. We excluded technetium-based imaging reagents, for which 15 nME 
approvals were granted for diagnostic kits7.
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to track with the general upward trends in both public 
funding and publication, especially with consideration 
for appropriate time lags. Third, during the 1960s there  
was another apparent extended decline in FDA approvals,  
albeit with a considerably lower baseline, which pre-
ceded the sustained increase in productivity for the 
remainder of the century. (This is often attributed to the 
thalidomide tragedy which, although largely avoided in 
the United States, led to much stricter FDA regulations 
— for example, requiring demonstration of efficacy and 
not just safety for the first time in 1962 (REF. 13).) Taken 
together, these observations reinforce the point that 
short-term trends can be deceptive.

The push for drug discovery — that is, the generation 
of new and innovative science that can be expected to 
lead to novel therapeutics — is not easily reduced to a 
simple metric as there are numerous interdependent 
factors, latencies and external influences that are unpre-
dictable and unquantifiable. However, for the remainder 
of this paper we will adopt publication rates as the best 
available surrogate. Publication is generally nearer to 
the event of actual discovery than either the funding of 
research or the training of scientists involved. Its growth 
seems to be steadier and less immediately susceptible to 
business cycles and other confounders than that of other 
variables, while still tracking reasonably closely to new 
drug approvals over the last half of the twentieth cen-
tury, given appropriate lag times. There are enough data 
on publication rates to give sufficient sample sizes for 
statistical analysis. Perhaps most importantly, they are 
easily classified by topic and so can be analysed by thera-
peutic area or even more specific categories. Although 
publication is not a perfect indicator of innovation, as the 
acknowledged repository of record for scientific discovery, 
it is not likely to be improved upon for the purpose of 
this Analysis.

Measuring pull
we now turn to the question of measuring the traditional 
forms of pull for pharmaceutical enterprises. To approxi-
mate the pull of medical need and commercial potential, 
the world Health organization (wHo) Global burden 
of Disease survey14 provides useful information. For the 
reference year 2002, it estimated straightforward mortal-
ity from various causes and disease burden to society, as 
measured by days of life lost to either premature death or 
disability, weighted by severity (the world Health report; 
see Further information). we can directly compare these 
surrogates for push and pull by plotting publication rates 
in various therapeutic areas, as determined by appropri-
ate PubMed searches (see Supplementary information 
S1 (table)), against the relative disease burden associated 
with those therapeutic areas (that is, the burden of a dis-
ease relative to the total burden of all diseases) (FIG. 2). we 
suggest that global disease burden can be primarily con-
sidered as a measure of medical need, whereas narrowing 
the focus to the developed world places greater emphasis 
on commercial potential. There is a positive correlation 
between global disease burden and rates of publication 
of scientific articles, when analysed by therapeutic areas 
used by the wHo (FIG. 2) (R2 = 0.37, p < 0.01; that is, 
using linear regression the probability that the variables 
are independent of one another is less than 0.01, and the 
proportion of the variation in publication rate that can 
be accounted for by a correlation with relative disease 
burden is 37%). The correlation is greater in the data for 
the developed world (r2 = 0.72), which differs from the 
global data primarily in a considerably reduced impact 
of infectious and parasitic diseases, respiratory infections 
and perinatal conditions (which include factors related to 
infant mortality).

It is not surprising that scientific output correlates 
more strongly with the pull of disease burden in a pop-
ulation that is better able to afford scientific research, 
although it is encouraging that infectious and parasitic 
diseases have high publication rates given their relatively 
lower disease burden in the developed world compared 
with the developing world. Perinatal conditions, by 
contrast, have low publication rates. The paucity of 
publications in this area might be attributable to a lack 
of scientific push: these conditions are closely associ-
ated with poverty (and therefore nutrition and access to 
basic health care) and there are few scientific mysteries 
surrounding their cause or cure. Publication rates may 
be reflective not only of push based on areas of rapid 
scientific advance, but also of pull based on areas most 
favoured by public funding and private investment. The 
focus on these areas is driven by medical need and com-
mercial prospects, potentially creating positive feedback 
loops15. Public funding is based on promising and rigor-
ously reviewed science, but is also subject to policy that 
is driven by medical need; this is evident in the response 
to the HIV epidemic. However, HIV and AIDS research 
funding has led to important scientific advances and has 
enabled new scientific opportunities16.

The notions of push and pull that we have introduced 
are unlikely to be completely independent of one another 
and separable, given the overlap of their causal factors. 

 Box 1 | Bibliometrics and scientometrics

The field of bibliometrics, by which the quantity and character of scientific publications 
are studied, has long been a mainstay of attempts to measure scientific progress.  
As a set of methodologies, this field has been driven primarily by practitioners of library 
science and the sociology of science. The more general field of scientometrics, which 
uses bibliometrics as a tool to study science in terms of growth and interaction 
patterns, social structures, costs and other parameters, was pioneered by the historian 
of science Derek de Solla Price. He first called attention to the exponential growth  
of scientific literature, based on publication counts47, and went on to consider the 
network properties of citations among papers48. 

Citation analysis was greatly advanced by Eugene Garfield, who devised the impact 
factor — an important and often controversial tool for evaluating the influence of 
publications and, directly or indirectly, the careers of academics49,50. Bibliometric 
analyses have been used in various applications involving narrowly specified subject 
areas, including fields relevant to biotechnology17. Garfield was the first to use science 
citation data in a highly directed fashion, in a study that analysed the growth of the 
field of apoptosis research51. Soon after that, it was proposed that medical subject 
headings (MeSH) from the Medline database could be used to effectively determine 
the impact factors of topics, as opposed to journals or authors52. Bibliometrics has also 
been applied to patent filings, as in the work of Murray tracing the “network of patents, 
papers, inventors and authors” in the field of tissue engineering37, and in the work of 
Ducor more generally relating co-authorship and co-inventorship3. These studies are 
important forerunners of the work presented in this Analysis.
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Nevertheless, we think that publication is a useful indicator 
of trends in scientific innovation that may culminate in 
new drugs. when data on NME productivity are plot-
ted against pharmaceutical r&D expenditure, there is a 
clear inverse correlation over the past decade. Although 
pharmaceutical investment is crucial for drug develop-
ment and its results contribute to the scientific literature, 
it is reasonable to assume that commercial investment has 
been more heavily influenced by the pull of commercial 
potential than has public investment, and that both are 
more influenced by unmet medical need than the general 
scientific literature. However, there remains a substantial 
fraction of publications that are driven primarily by scien-
tific novelty, whether the work has been explicitly identi-
fied as basic research or has arisen through the natural 
opportunism of the research process (or in the extreme 
case, by serendipity). It is in the character of the literature 
to follow the most novel and exciting scientific trends, 
creating an effect that resembles a chain reaction — for 
example, as seen with the recent upsurge in the number 
of papers on microrNA17.

Moreover, pharmaceutical investment is skewed to 
late-stage drug development, whereas public funding  
and publication have a greater impact on scientific 
novelty related to targets and mechanisms. A 2005 
study showed that, of the NMEs that were approved by 

the FDA from 1998 to 2003, 14% of compounds were 
directly attributable to university invention (and 28% to 
biotechnology company r&D)7. It is likely that an even 
larger proportion of target identification and validation 
has benefited from public research than these figures 
suggest and should therefore be evident in the scientific 
literature.

Publication trends
one particular challenge to analysing publication trends 
is that long-term averages of publication rates may 
reflect institutional inertia, whereby established journals,  
funding bodies, academic careers and infrastructure 
combine to create a self-perpetuating publication focus15. 
when medium-term rates of change in publication 
patterns are examined (FIG. 2), there is less correlation 
with disease burden, but suggestions that changes in 
publication rates in a given area may also be influenced 
by scientific opportunity. For example, research in infec-
tious diseases, despite starting at a high rate of publica-
tion, is currently one of the slowest growing categories, 
perhaps reflecting the notorious recent paucity of new 
antibiotic classes18–20. The fastest-growing category is  
diabetes, which has experienced a late surge in novel  
target opportunities, second only to oncology21–23. However, 
even for rapidly changing growth trends in publication 

Figure 2 | rate of scientific publication versus relative disease burden for key therapeutic areas. Horizontal axes 
represent the relative burdens of various disease categories to society, as determined by the World Health Organization 
(WHO) in 2002. The disability-adjusted life year (DAly) metric for each disease area, which combines a population’s years 
of life lost to each cause with the years of life lived with disabilities (weighted by severity), was divided by the total DAly 
for all causes to give the relative disease burdens. The vertical axis indicates the average publication rate in thousands of 
scientific articles per year, over the years 1998–2007 inclusive. Both axes are on logarithmic scales. Each circle represents a 
therapeutic area as defined by the WHO disease categories, which were mapped to the Us national library of Medicine’s 
medical subject headings (MesH) that are used for PubMed queries (see supplementary information s1 (table)). Part a 
shows overall global figures, whereas part b is restricted to the developed world, again as defined by the WHO report. 
The areas of the circles reflect the annual number of deaths for each cause, as a proportion of the relevant population. 
Circle radii are therefore scaled to the cube root of mortality rates (corresponding to the cross-section of a sphere),  
and standardized in each part to cardiovascular deaths, which were maximal in both cases: 16,733,160 globally and 
6,333,713 in the developed world. For comparison, deaths from diabetes were 987,816 and 244,599, respectively.
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rates, there may be influences from newly arising medical  
need; for example, the rapid 5-year growth in publica-
tion rate in the area of respiratory infections in 2003 was 
partly due to the public-health challenges of avian and 
human influenza and severe acute respiratory syndrome 
(SArS), and has slowly subsided24.

To study publication rates by individual therapeutic  
area, we make use of the medical subject headings 
(MeSH) terminology — which is used by annotators 
of PubMed — beginning with the top-level diseases 
category set (but including also ‘mental disorders’ from 
the psychiatry and psychology set, and excluding ‘animal 
diseases’ and ‘pathological conditions, signs and symp-
toms’). This categorization differs from that used by the 
wHo as well as other disease ontologies in common 
use25–28, but has the advantage of having been uniformly 
applied over many years by PubMed annotators to indi-
cate whether a given paper has a given category as a 
major topic (as opposed to straightforward text searches 
that may produce incidental occurrences). Technical 
details of our methods are presented elsewhere29.

The MeSH hierarchy overlaps itself in important 
ways (for example, diabetes mellitus is counted under 
both endocrine system diseases and nutritional and 
metabolic diseases). Even if the hierarchy itself were  
non-overlapping, many articles covering several related 
topics would be classified under more than one heading,  
as detailed indexing is performed. Therefore, when the 
entire PubMed corpus is analysed, certain disease head-
ings have a substantial percentage of papers in com-
mon. Specifically, 15% of disease area pairings exceed 
20% overlap in articles, and several exceed this over-
lap considerably (see Supplementary information S2 
(table)). we mitigate double counting within those pairs 
by various expedients (see Supplementary information 
S3 (table)), which generally involves either combining 
headings with major overlaps or subtracting counts in 
one category from another so as to assign the ‘hit’ to only 
one of the categories. Together, the adjustments made 
are sufficient to ensure that no pair of disease areas has 
more than 20% of articles in common.

As an example, one global adjustment was the sub-
traction of hits for neoplasms from all other categories, as 
tumours occur in so many tissues and systems. Note that 
this does not preclude any mention of cancer in an article 
that is categorized in another disease area, but only the 
annotation of cancer as a major topic of the article, on a 
par with the other category; in cases in which the article 
was annotated with neoplasms as a major category, the 
article is counted solely under neoplasms in our analysis. 
Using these rationalized MeSH categories to count articles 
published over the past 30 years shows that publications 
in each disease area increased continuously over 5-year 
periods (FIG. 3a), with the exception of stomatognathic 
(oral) diseases, on which publications declined in the 
mid 1990s. The absolute increases are most evident for 
the areas with the greatest numbers of articles published, 
such as cancer, cardiovascular research and neurology. 
In this and all subsequent figures, the order of presenta-
tion of MeSH categories is based on decreasing overall 
30-year publication counts.

To make differences and trends more apparent, the 
publication counts can be divided by the total number 
of articles for all disease areas in each time period, for an 
indication of the ‘market share’ of a disease area. These 
shares vary from 17.2% for cancer to 4.5% for viral dis-
ease to 1.4% for endocrine disorders, for the overall 
30-year counts. The share in each 5-year period is then 
compared with the share in the preceding 5 years to show 
the percentage change in the share of total publications 
of each disease area (FIG. 3b). It is evident that publica-
tions on cancer have increased strongly but unevenly 
in share, starting from a large initial increase over 
1973–1977, which was probably a prolonged effect of 
the enhanced funding throughout the 1970s associated 
the US National Cancer Act of 1971 (REF. 30). The other 
most marked change is for viral disease, the publication 
counts for which grew sharply in the 1980s, driven by 
the emergence of HIV and AIDS31,32, and have since 
subsided noticeably. Publications on mental disorders 
have shown the steadiest growth over three decades, and 
there are upturns in publications on neurology in the late 
1990s, and nutritional and metabolic disorders (which, 
as noted above, include diabetes) in the past decade. 
Certain other disease areas exhibit a nearly continuous 
decline in share, including urogenital, digestive, and con-
genital and hereditary diseases, although again it should 
be noted that these trends are relative to publications in 
other areas and not absolute trends. In a few cases the 
trends may also relate to changes in disease area MeSH 
annotations over time.

The long-term signals detected by the analyses above 
generally accord with recognizable trends and events, 
such as disease emergences and policy shifts. However, 
shorter-term tendencies are of greater interest for the 
insights they may provide for current decision making.  
To characterize such variations, we perform similar 
analyses on annual counts, rather than 5-year groupings, 
over the same 30-year period. Although the year-on-year 
changes in numbers of articles published are too variable 
to readily illuminate trends, it is possible to visualize rates 
of change over a 3-year window in a ‘heat’ map (FIG. 4). 
This confirms impressions from the more coarse-grained 
year-on-year analysis, such as the extended expansion in 
virus research in the 1980s, beginning with the first dem-
onstrations of retroviral involvement in human disease, 
and reinforced by the identification of HIV as the causa-
tive agent for AIDS in the mid 1980s31. between the first 
incidence of AIDS and the identification of HIV as the 
causative agent for AIDS, there is also a burst of activity 
in the immune system category. The activity in stomato-
gnathic diseases in the early–mid 1980s was spread over 
several topics, including temporomandibular joint dis-
order and periodontal disease, but this growth is relative 
to a low baseline rate.

Among more recent short-term trends detected is 
the surge of activity in the nutritional and metabolic 
category, as discussed above. A strong increase in the 
nervous system category just before 2000 may reflect 
the culmination of the ‘Decade of the brain’ (a US 
initiative from 1990 to 2000, the stated aim of which 
was “to enhance public awareness of the benefits to be 
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derived from brain research”) and especially the impact 
of enhanced functional imaging capabilities. both this 
increase in nervous system research and the expansion 
in research on mental disorders in the past decade were 
enabled by strong growth in neurosciences funding from 
1995 to 2005 by industry and government33. The burst of 
publication activity in the respiratory category is attrib-
utable to SArS, avian influenza and chronic obstructive 
pulmonary disease. Note that the overlap between res-
piratory and viral diseases did not reach the threshold 
requiring separation in our rationalization of MeSH cat-
egories, so that these viral infections also occur in the 
respiratory category.

The visualization of annual publication growth rates 
(FIG. 4) also makes evident a general decline across many 
diseases in the early 1990s, which is less apparent in the 
overall publication data (FIG. 1). Although this reduction 
in disease-related publication rates ends shortly before 
the start of the downturn in pharmaceutical NME pro-
ductivity, it is not possible to infer causality given the 
complexity of the relationships between the variables, 
as discussed above.

Characterizing disease areas
As well as determining the number of articles that are 
published in a given disease area, additional informa-
tion about those articles can be assessed using various 
MeSH annotations that relate to other aspects of content. 
we compiled several such subclassifications for the years 
2003–2007 within each therapeutic area. For example, if 
an article is annotated with ‘genes’ or ‘proteins’ as major 
headings, it suggests that the research being reported 
uses a molecular biological approach that may offer 
specific target opportunities. Such a conclusion is also 
suggested by the MeSH category ‘genetic techniques’, 
referring to the use of any of a wide range of molecular 
biological techniques, from cloning and sequencing to 
expression profiling and proteomics. The heading ‘bio-
chemical phenomena’ encompasses cellular biochemistry 
and signal transduction, whereas ‘physiological actions’ 
includes cell physiology, electrophysiology, homeostasis 
and similar phenomena. In short, when present on an 
article with a specific disease area as a major heading, 
these annotations suggest that the article addresses the 
molecular basis of a disease and the characterization of 

potential targets. The heading ‘pharmacological actions’ 
suggests the availability of chemical tools or potential 
drugs. To present these characterizations in a fashion 
that allows for their comparison, we calculate the fraction 
of articles in each disease area with a given annotation, 
and then determine a z-score — that is, the number of 
standard deviations this fraction is from the mean value 
for this annotation over all disease areas (FIG. 3c). The 
histogram shows that cancer has by far the most articles  
on genes, which is due to a preponderance of onco-
genes and specific oncogenic mutations, followed by 
the congenital and hereditary disease category, which 
is driven by single-gene Mendelian disorders, and then 
the immune system category. The congenital and heredi-
tary disease area is also noteworthy for its use of genetic 
techniques, not surprisingly, although cancer and various 
infectious diseases are also positive for this subcategory 
annotation. The immune system category and the hae-
mic and lymphatic disease category are heavily annotated 
with proteins, due to the prevalence of cell surface and 
extracellular signalling proteins, immunoglobulins and 
biopharmaceutical products. As expected, biochemical  
phenomena and physiological processes feature promi-
nently in the nutritional and metabolic disease area, and 
biochemical phenomena are also notable in cancer and 
congenital and hereditary diseases. other notable hits 
for physiological processes are neurological and mental 
disorders, and to a lesser extent urogenital, endocrine 
and cardiovascular disease. Mental disorders and cardio-
vascular disease areas arguably exhibit a ‘pre genomic’ 
profile: above average in physiological processes and 
pharmacological actions but below average in the 
attributes that relate to molecular targets.

It is also possible to examine the past literature on 
an area of disease using additional MeSH categories 
selected ad hoc. For example, in the field of oncology 
there have been small but discernible waves of publi-
cation arising from new areas of research — including 
oncogenes (which were first mentioned in more than 
1% of cancer articles in 1984, and peaked as a percent-
age in 1993), apoptosis (beginning in 1995 and peaking 
in 2004), and gene expression profiling (beginning in 
2002 and peaking in 2005) — which have contributed 
to the overall body of cancer research. Underlying these 
were a steadier background of growth from topics such 
as protein kinases (beginning in 1988) and signal trans-
duction (beginning in 1999), which continue to increase 
up to the present day. The MeSH hierarchy branches out 
through several levels of classification to some 25,000 
subcategories, such that we are able to compile counts for 
every possible annotation and search for recent changes 
in publication rates that achieve statistical significance, 
some of which are described below.

High-impact publications 
The MeSH filters on the vast numbers of articles published 
may be used to identify the types of publications that 
provide the greatest scientific push, at least as regards 
understanding of publication trends at a molecular level. 
However, the quality of the publications is also impor-
tant. The numbers of publications cannot have increased 

Figure 3 | scientific publication over three decades classified by MesH disease 
headings. The disease areas for each column were derived from top-level medical 
subject headings (MesH), as described in the main text. a | numbers of articles published 
by 5-year spans, given in the inset key (left). b | Changes in ‘market share’ of each disease 
area relative to that of the previous period. share was calculated by dividing the number 
of articles in the given disease area by the total number of articles published in all disease 
areas. Time spans are as in part a. Two values that are off-scale are indicated by arrows.  
c | Characterization of disease areas by various additional MesH categories, indicated in 
the inset key (right) and described in the main text. The fraction of articles in each disease 
area with the given annotation is calculated, followed by the mean and standard 
deviation over all disease areas. The difference between each fraction and the mean is 
divided by the standard deviation to determine a z-score. in calculating the statistical 
parameters, two outliers (marked by arrows) were omitted so as not to compress the 
scale due to a large standard deviation. EnT, ear, nose and throat.
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at the rates observed without an approximately corres-
ponding increase in the numbers of journals, and there 
is no guarantee that this mutual expansion is in pro-
portion to the rate of generation of novel, important, 
well-executed science. Although restricting attention 
to a few high-impact journals has the disadvantage of 
decreasing sample size and therefore statistical power, it 
has two salutary effects: first, it establishes a ‘container’ 
of constant size over time, for which space is at a pre-
mium and competition fierce; and second, it increases 
the chances of capturing papers that are more than 
ordinarily important, based on editorial standards of 
scientific impact and broad interest.

For these purposes we used an often-cited ranking 
of scientific journals based on traditional impact factors 
combined with the Google Pagerank algorithm, which 
takes into account the prestige of the citing journal34. 
From this list we chose the top three medical journals 
(The New England Journal of Medicine, The Journal of 
the American Medical Association and The Lancet) and 
the top three non-medical journals (Nature, Science 
and Cell). Searches for each disease area were restricted 
to these journals over the same time periods as in our 
previous analyses, and radar plots were used to provide 
multiple dimensions of the data in a visually tractable 
manner (FIG. 5). In this way, variations among journals 
in their representation of different disease areas are 
immediately evident from the shapes of the polygons, 
and changes over time are apparent from the widths of 
the coloured bands. Axes are scaled such that the areas 
of the polygons approximate the fraction of all disease-
related articles in each journal that are represented by 

that disease area. The superimposed dotted hexagons 
represent the average number of publications on that 
disease area across all journals from 1978 to 2007.

As in most of the analyses that we have done, publi-
cations on cancer dominate, showing strength in all six 
journals but a marked over-representation in Cell and 
a slight under-representation in the medical journals. 
The virus category publications show strong growth 
(for reasons discussed above) in Science and Nature, 
and slight over-representation in medical journals. The 
under-representation of infectious and neurological and 
psychiatric disease area publications in Cell relative to the 
other journals highlights two caveats to this approach: 
first, that the stated scopes of journals create differences 
in the types of submissions the journal attracts, which 
may vary over time (such as the historic focus of Cell on 
mammalian systems); and second, that major journals 
tend to spin off new specialty journals (such as Neuron) 
which may be equally competitive but more narrowly 
targeted, such that impact factors are lower. Indeed, 
many specialty journals are equally or more likely to 
publish groundbreaking papers, but the principle of the 
method we have used is to sample a restricted space at 
the top of the hierarchy, where the most basic scientific 
or medical advances are likely to be witnessed. Moreover, 
altering the analysis to account for these caveats would 
also introduce ascertainment bias, for reasons such as 
that most of the journals in question have not existed for 
the 30-year time span sampled.

The numbers of publications in the cardiovascular 
research area is considerably higher in the medical jour-
nals than in the scientific journals. This publication skew 
towards medical journals is also a feature of urogenital, 
digestive, haemic and lymphatic, and endocrine diseases, 
perhaps reflecting imbalances in the basic versus clinical 
science that underpins the various therapeutic areas. 
Publications in the respiratory disease area, however, 
have grown considerably in Nature and Science in the 
most recent 5-year period, much of it due to the interest 
of these journals in influenza and SArS. we also note 
recent growth in the number of Cell articles on disorders 
of environmental origin, which is based on small num-
bers of articles for that disease area and overwhelmingly 
concerns the topic of DNA damage.

It is also possible to measure article impact independ-
ently of journal impact by directly consulting citation 
data of individual publications, especially given an appar-
ent trend in the scientific community towards citing  
fewer and more recent articles35. For articles published 
in each year from 2002 to 2006, we determined the top 
1% of the most-cited papers that were associated with 
any disease area, and then determined the relative rep-
resentation of each disease area in that elite set as a 
whole (FIG. 6). Each square in the graph represents one 
of the years measured, from smallest (2002) to largest 
(2006). Squares shaded red represent those measure-
ments that are significantly greater than the 1% that 
would be expected by chance (p < 0.05 after correction 
for multiple testing). Similarly, squares shaded blue 
represent measurements that are significantly below 
the chance expectation for top-cited articles. Disease 

Figure 4 | rates of change in scientific publication by year for MesH disease 
categories. The rate of change in the numbers of publications in each disease area 
(measured as in Figure 2) for each year from 1979 to 2006. Red ‘hot spots’ indicate surges 
of publication and dark blue areas represent periods of reduced activity. EnT, ear, nose 
and throat; MesH, medical subject heading.
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areas that exhibit a strong recent citation record include 
nutritional and metabolic disorders, cancer and cardio-
vascular disease, and publications on viral diseases 
show strong citations in several recent years.

Another measurement of scientific push, and one more 
closely related to commercial exploitation of scientific 
discoveries than publication rates, is the rate at which 
articles lead to intellectual property in the form of pat-
ents. we scanned full-text patents from US, European 
and world Intellectual Property organization filings 
and, based on author names, associated those patents 
to specific journal publications and thence to disease 
areas (BOX 2). by automating techniques used by others 

for patent–paper pairing36,37, we were able to analyse a 
substantially greater number of patents than was previ-
ously possible. Additional integrity checks were applied, 
such as the proximity of dates to one another. Although 
most patents cannot be unambiguously associated with 
specific papers, a sampling suggests that our algorithm is 
sufficiently accurate to provide a reliable signal. overall, 
3–4% of papers could be associated to patent filings. The 
same scheme is used for plotting the results for patents 
as was used for citations (FIG. 6). Again, cancer is found to 
be the leader in the field, with only the immune system 
category and recently the virus category also demonstrat-
ing greater than average numbers of patent filings. The 

Figure 5 | representation of MesH disease categories in high-impact journals. Each ‘radar plot’ indicates the 
relative extent of representation of the indicated medical subject heading (MesH) in six journals: Nature, Science, Cell,  
The Journal of the American Medical Association (JAMA), The New England Journal of Medicine (nEJM) and The Lancet. 
Journals are oriented around the hexagons according to the key (bottom right), with basic-science journals at the top  
and medical journals at the bottom. Values on each axis represent the proportion of the given disease area relative to  
the overall number of disease-related articles in that journal. The outer edge of each hexagon frame represents 25% of 
disease-related articles, and the axes are scaled by the square roots of the fractions so that the areas of the polygons 
approximate the overall counts. The nested irregular polygons represent cumulative contributions of successive 5-year 
spans, as indicated in the key, so that widths of colour bands reflect the relative contributions for those periods.  
The superimposed dotted hexagons show the percentage represented by that disease area in the entire disease-related 
scientific literature for the overall period. EnT, ear, nose and throat.
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correlation between number of citations and number of 
patent filings within disease areas is strong, except for 
cardiovascular, nutritional and metabolic, and to a lesser 
extent mental disorders, which show greater strength in  
the number of citations than in the number of patent filings.  
A correspondence between the number of citations and 
the number of patents for individual scientists has been 
noted before37, but we observe that this connection may 
extend to entire disease areas.

Diseases, genes and pathways
So far we have examined various bibliometric measures 
at the level of disease areas, restricting our analysis to the 
top-level MeSH disease categories. This may be appro-
priate in assessing major organizational commitments 
to invest in therapeutic areas, but a more frequent need 
would be to examine specific diseases or other more fine-
grained divisions of therapeutic areas for their current 
level of scientific activity. A narrower focus, whether by 
time, category or filters of any kind (such as for papers 
with genes as major topics), will reduce article counts and 
statistical power. This has the disadvantage of producing 
a more variable readout that requires careful assessment, 
but has the great advantage of removing any averaging 
effect of large categories and allowing small but important 
signals to emerge. Subdividing disease areas is also more  

likely to avoid the effects of institutional inertia discussed 
above, as redirection of resources and attention within a 
broad research area, which can be detected by examining  
disease subcategories, is easier than changing career 
directions and editorial remits to entirely new fields.

we typically assess publication growth in two time 
frames: the number of publications in the most recent  
2 years relative to the 2 years before that, and the number 
of publications in the most recent 5 years relative to the 
5 years before that. This provides short-term trends 
— 2 years being about the minimum time to accumu-
late sufficient counts for statistical significance — and 
medium-term baseline trends for comparison, so as to 
establish whether a trend is accelerating, decelerating 
or reversing. we apply the two-sided Fisher’s Exact test, 
with bonferroni correction for multiple testing, on the 
large number of MeSH disease categories and subcate-
gories to determine which exhibit recent changes that 
are significantly different from variation that is expected 
by chance. MeSH terms that were introduced or have 
changed their organizational history in the past 10 years 
are excluded from this analysis as it is difficult to derive 
accurate quantitative data on them. These excluded dis-
eases are included in Supplementary information S4 
(table) as the fact that their organization in the hierarchy 
has changed may make them intrinsically interesting. 
results are only used for diseases that can be clearly 
defined, rather than broad categories of disease. If a cat-
egory and one of its immediate subcategories are both 
found to show significant changes, only one — generally 
the more specific one — is selected for display.

The disease categories with the most significant 
recent trends are displayed in a scatterplot with 5-year 
growth on the horizontal axis and 2-year growth on the 
vertical axis (FIG. 7a). with respect to a diagonal that rep-
resents equal 2-year and 5-year growth rates, publication 
rates for those diseases above the diagonal are accelerating  
relative to the 5-year baseline trend, and those for dis-
eases below the diagonal are decelerating. The sizes of 
the circles indicate the numbers of articles that were 
published in the past 2 years, and the colours indicate 
the magnitude of the statistical significance. Insulin 
resistance shows the strongest growth in publications on 
both axes, confirming that research on insulin resistance 
was the main component of recent publication growth 
in the nutritional and metabolic disease area. Articles 
on orthomyxoviridae infections exhibit strong expan-
sion beyond the baseline growth, reflecting work on 
avian influenza. At the other extreme, categories such as 
hyperlipidaemia and helicobacter infections have shown 
recent declines in publications. Most 2-year publication 
trends are reasonably consistent with 5-year trends, with 
the exception of publications on neoplasm invasiveness, 
which show a marked recent decline despite extensive 
medium-term growth.

The same technique can be applied to other annota-
tions besides those given by MeSH categories, provided 
there is a facility to extract additional features from the 
PubMed abstracts. For example, to assess growth rates 
in publications mentioning specific genes, we conduct a 
search for recognizable gene names (and their synonyms) 

 Box 2 | Methods

Publication counts were generated using a freely available tool set of the National 
Center for Biotechnology Information, eUtils53. The PubMed identifiers for each 
selected disease area, journal and other MeSH categories were downloaded using 
eUtils. The entire PubMed database was also downloaded and information on 
publication year was extracted. These data were used to generate counts for each 
disease area and range of years. The queries corresponding to disease areas were 
defined in a way that minimized overlap between disease areas (see Supplementary 
information S2 (table) and S3 (table)). We also examined each disease with restrictions 
on the publication type to journal, editorial, letter, news and comments, but discovered 
no unexpected trends. Gene names were identified in abstracts using synonyms from 
the Human Genome Organization (HUGO), EntrezGene and UniProt databases29.

Citations were accumulated from all publications until mid 2008. Science Citation 
Index (SCI) data were obtained from Thomson Reuters. 7.3 million articles from PubMed 
were mapped to SCI using article titles and journal names, of which 6.3 million were 
unique matches. This enabled the attachment of citation counts to PubMed articles 
indexed with MeSH terms. The citation count for a given paper is the cumulative 
number of publications until mid 2008 that cited the paper.

Published patents were downloaded from Micropatents (Thomson Reuters).  
This included US, European and World Intellectual Property Organization filings with  
a primary or secondary classification code that suggested relevance to drug discovery 
(namely, A61K, A61P, C01, C07, C08, C12N, C12P and C12Q). 134,887 articles that were 
published in 2002–2006 were mapped to individual patents based on matching subsets 
of author names. Patent matches to publications were scored by summing the inverse 
author frequency — which is inversely proportional to the number of patents on which 
a given author is named as an inventor — of all matching authors on a patent and a 
publication. The score threshold for a match was reached when at least two authors 
(with no more than 10 patents each) were named on both the patent and the 
publication. The publication had to be no longer than 3 years after, and not before,  
the patent filing year. A sampling of the resulting matches was curated. We estimated 
~75% precision, assessed solely on the correspondence of the titles of patents and 
publications. Although this cannot accurately associate a specific patent with  
a publication, we think it provides a reasonable sampling across a disease area.  
Similar patent to publication matching algorithms have been used previously37.
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by methods briefly described in BOX 2 and detailed else-
where29 (FIG. 7b). we focus on genes that show growth in 
publication rates. As might be expected, we find more 
variability in trends for genes than for disease subcate-
gories, reflected in wider dispersion from the diagonal. 
So, publications that mention forkhead box P3 (FoXP3)
in their abstract have continuously increased in number, 
reflecting the recent appreciation of the role of this tran-
scription factor in the control of the regulatory T cell  
lineage in mice38. Publications that mention janus kinase 
2 (JAK2) exhibit a recent burst in publication rate beyond 
their consistent medium-term growth, which probably 
results from the discovery of a variant of this well studied 
gene that is prevalent in chronic myeloproliferative disor-
ders39. by contrast, ADIPOQ (adiponectin, C1Q and col-
lagen domain-containing) was only characterized shortly 
before the medium-term time frame of our analysis. It 
exhibits strong early publication growth when associated 
with metabolic syndrome and cardiovascular disease40 — 
a growth that has slackened in the near-term time frame.

It is also possible to identify pathways that are asso-
ciated with the most productive publication record, 
by taking all publications associated with genes that 

have shown growth in publication rates in the past 2 
years (p < 0.001), and mapping them onto manually 
curated pathways derived from various sources (such 
as bioCarta). we restrict our attention to those path-
ways with 10–100 associated genes and identify the 
genes in each pathway that exhibit strong publication 
growth. we use a two-tailed Fisher’s Exact test to deter-
mine which pathways are enriched with such genes to 
an extent beyond chance expectation. The top path-
ways, in order of decreasing significance, are toll-like 
receptor signalling (8 out of 42 genes with significant 
publication growth), tumour necrosis factor receptor 2  
signalling (8 out of 46 genes), interleukin-22 soluble 
receptor signalling (9 out of 80 genes) and dendritic cells 
in regulating T helper type 1 (TH1) and TH2 development 
(5 out of 22 genes) (see Supplementary information S5 
(table)).

Discussion
bibliometrics provides a set of methods for quantitative 
analysis of the scientific literature — the repository of 
knowledge that is important to drug discovery. Although 
this data collection might seem chaotic, with ‘noisy’ and 

Figure 6 | Highly-cited articles and associations with patent filings by disease area over 5 years. This figure shows 
percentages of highly-cited articles (squares) and patent filings (circles) in each disease area. in each column the icons, 
from smallest to largest, represent the years 2002–2006. Red icons indicate the values are greater than expected by 
chance, blue icons represent values that are less than expected by chance and grey icons represent values that are the 
same as expected by chance, according to a two-sided Fisher’s Exact test (p < 0.05) with Bonferroni correction for multiple 
hypothesis testing. yellow trapezoids connect the icons representing the first and last years of the span, giving some 
indications of spread and trend, but not of statistical significance. squares on the left side of each column represent the 
numbers of highly-cited articles, determined by finding the 1% most-cited articles published in each year in all disease 
areas and then dividing the contribution of each disease area by this total. Therefore, the expected value for sets of 
articles chosen at random would be 1%. Circles on the right side of each column represent the percentages of articles in 
each disease area that are associated with patent filings, as described in BOX 2. EnT, ear, nose and throat; MesH, medical 
subject heading.
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sometimes confusing signals over time, bibliometrics can 
be used to monitor long-term tendencies and possibly  
even highlight medium- or near-term anomalies that 
can be readily investigated further.

we have suggested that bibliometric analysis can 
be used to indicate the extent of novel research activity 
at the level of broad therapeutic areas and at the level 
of individual diseases, as well as to address additional, 
specific questions. However, it must be acknowledged 
that selecting certain aspects of the data can compro-
mise statistical analysis: smaller sample sizes reduce the 
power of any tests applied, and seemingly paradoxical 
statistical effects may arise when data are divided into 
subsets41. These will be limiting factors in one’s ability to 
focus attention on scientific ideas of high current interest,  
and perhaps this is the point at which human instinct 
and judgment are needed.

The scientific literature is not homogeneous, and 
subsets of the data may be uneven in various respects. 
Trends that are seen when more specific selection criteria 
are applied to data, such as individual diseases or genes 
for which there are limited numbers of publications, will 
be more susceptible to effects such as investigator bias, 
which tends to emphasize the more eminent and/or well 
funded workers in the field. Different therapeutic areas 
are likely to vary in their publication rates and practices, 
based on differing cultures among scientific disciplines, 
the number of available journals (possibly with different 
remits and customs) and other factors. with regard to 
citation analysis, it has been noted that citation prac-
tices depend on the field of study and that, although 
these can be normalized, the results may not be con-
sistent42. However, this can be seen as resulting from 
different, legitimate citation practices, rather than a lack 

Figure 7 | recent growth in publications by disease and by individual gene. The horizontal axes show percentage 
growth in 2003–2007 relative to 1997–2002, and the vertical axes show growth in 2006–2007 relative to 2004–2005.  
The diagonal therefore indicates points for which growth is consistent in the short and medium term; publication rates  
of points above the diagonal are accelerating and those for points below the diagonal are decelerating. The size of the 
circles indicates the number of publications in the final 2 years surveyed, as shown in the key (grey circles, scaled to  
the cube root of publication count). Colours indicate the statistical significance of the 2-year differences after Bonferroni 
correction for multiple testing, for either positive or negative growth, as defined in the key (coloured circles; arrows 
pointing up indicate positive growth and arrows  pointing down indicate negative growth). a | Changes in publication 
rates concerning medical subject heading (MesH) disease subcategories that achieve statistical significance (out of 
4,354). several diseases are not shown, in cases in which their MesH annotation changed between 1998–2007, or in which 
the categories were very broad, had fewer than 500 publications in 2006–2007, or were closely related to another disease 
already shown. Coronavirus infections (mostly due to severe acute respiratory syndrome) were off the scale, with 84% 
annualized growth on the 5-year axis but 36% annual decline over the past 2 years. b | Changes in publication rates 
concerning genes that achieve statistical significance (out of 13,024). Only genes with over 100 identifiable publications  
in 2006–2007 are shown. The overall analysis may be biased toward genes with more established and consistent 
nomenclature, as it was necessary to scan abstracts for gene symbols and known synonyms to derive this data. ADiPOQ, 
adiponectin, C1Q and collagen domain-containing; CCl2, CC-chemokine ligand 2; CRP, C-reactive protein; EGFR, 
epidermal growth factor receptor; FOXP3, forkhead box P3; FRAP1, FK506 binding protein 12-rapamycin associated 
protein 1 (also known as mTOR); il17A, interleukin-17A; il-23A, interleukin-23 subunit-a; il2RA, interleukin-2 receptor-α; 
JAK2, janus kinase 2; lRRK2, leucine-rich repeat kinase 2; nFKB1, nuclear factor kB1; PPARGC1A, peroxisome proliferator-
activated receptor-γ, coactivator 1α; TCF7l2, transcription factor 7-like 2; TlR, toll-like receptor; TnFsF13B, tumour 
necrosis factor (ligand) superfamily, member 13b.
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