Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear receptors in cancer — uncovering new and evolving roles through genomic analysis

Key Points

  • Genomic approaches are uncovering new roles for nuclear receptors (NRs) in cancer and are implicating NRs in cancer that were previously known to play roles in other biological processes.

  • Genomic technologies have provided researchers with an unprecedented volume of information that allows them to integrate various genomic data sets to obtain a wider picture of NR action on the genome.

  • Genomic assays have revealed how the androgen receptor (AR) is reprogrammed upon transformation and how AR binding and target gene expression patterns change in castration-resistant prostate cancer.

  • Cistromic data sets reveal novel evidence of crosstalk between NRs, most notably between a number of different NRs and the oestrogen receptor to regulate transcriptional processes in breast cancer.

  • New evidence has emerged to support cancer-related functions for the adopted NRs that previously were studied in metabolic contexts.

Abstract

Nuclear receptors (NRs) have historically been at the forefront of cancer research, where they are known to act as critical regulators of disease. They also serve as biomarkers for tumour subclassification and targets for hormone therapy. However, most tumour types express extensive repertoires of NRs, whose interactions provide multiple paths for disease progression and offer potentially untapped mechanisms for therapeutic interventions. Recently, next-generation sequencing technologies have provided genome-wide insights into the complex interplay of NR transcriptional networks and their contribution to the development and progression of cancer. These findings have altered the traditional understanding of NR activities in oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear receptors can be grouped according to their associated ligand and are involved in many forms of cancer.
Figure 2: Generating an integrated genomic view of the role of NR function in cancers and potential utilization in patient stratification.
Figure 3: Regulatory patterns and crosstalk of two activated nuclear receptors.

Similar content being viewed by others

References

  1. Jin, Z., Li, X. & Wan, Y. Minireview: nuclear receptor regulation of osteoclast and bone remodeling. Mol. Endocrinol. 29, 172–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Yin, K. & Smith, A. G. Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes. Cell. Mol. Life Sci. 73, 3789–3800 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Nagy, Z. S., Czimmerer, Z. & Nagy, L. Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism. Mol. Cell. Endocrinol. 368, 85–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Papacleovoulou, G., Abu-Hayyeh, S. & Williamson, C. Nuclear receptor-driven alterations in bile acid and lipid metabolic pathways during gestation. Biochim. Biophys. Acta 1812, 879–887 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Choi, J. M. & Bothwell, A. L. The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Mol. Cells 33, 217–222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Moore, L. B. et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J. Biol. Chem. 275, 15122–15127 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Danielian, P. S., White, R., Lees, J. A. & Parker, M. G. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11, 1025–1033 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hong, W., Baniahmad, A., Liu, Y. & Li, H. Bag-1M is a component of the in vivo DNA-glucocorticoid receptor complex at hormone-regulated promoter. J. Mol. Biol. 384, 22–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, M. H. et al. A natural polymorphism in peroxisome proliferator-activated receptor-alpha hinge region attenuates transcription due to defective release of nuclear receptor corepressor from chromatin. Mol. Endocrinol. 22, 1078–1092 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Becnel, L. B. et al. Nuclear Receptor Signaling Atlas: opening access to the biology of nuclear receptor signaling pathways. PLoS ONE 10, e0135615 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huggins, C. & Hodges, C. V. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J. Clin. 22, 232–240 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Huggins, C. Endocrine methods of treatment of cancer of the breast. J. Natl Cancer Inst. 15, 1–25 (1954).

    CAS  PubMed  Google Scholar 

  14. Bluemn, E. G. & Nelson, P. S. The androgen/androgen receptor axis in prostate cancer. Curr. Opin. Oncol. 24, 251–257 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomas, C. & Gustafsson, J. A. Estrogen receptor mutations and functional consequences for breast cancer. Trends Endocrinol. Metab. 26, 467–476 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, D. & DuBois, R. N. Inflammatory mediators and nuclear receptor signaling in colorectal cancer. Cell Cycle 6, 682–685 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Y., Hagedorn, C. H. & Wang, L. Role of nuclear receptor SHP in metabolism and cancer. Biochim. Biophys. Acta 1812, 893–908 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Long, M. D. & Campbell, M. J. Pan-cancer analyses of the nuclear receptor superfamily. Nucl. Receptor Res. 2, 101182 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mason, B. H., Holdaway, I. M., Mullins, P. R., Yee, L. H. & Kay, R. G. Progesterone and estrogen receptors as prognostic variables in breast cancer. Cancer Res. 43, 2985–2990 (1983).

    CAS  PubMed  Google Scholar 

  20. Harvey, J. M., Clark, G. M., Osborne, C. K. & Allred, D. C. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 17, 1474–1481 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Bardou, V. J., Arpino, G., Elledge, R. M., Osborne, C. K. & Clark, G. M. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J. Clin. Oncol. 21, 1973–1979 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Perez, E. A. et al. Predictability of adjuvant trastuzumab benefit in N9831 patients using the ASCO/CAP HER2-positivity criteria. J. Natl Cancer Inst. 104, 159–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Chan, M. et al. Outcomes of estrogen receptor negative and progesterone receptor positive breast cancer. PLoS ONE 10, e0132449 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kittler, R. et al. A comprehensive nuclear receptor network for breast cancer cells. Cell Rep. 3, 538–551 (2013). This paper reports the first complete NR regulatory network in a single-cell system.

    Article  CAS  PubMed  Google Scholar 

  25. Uhlenhaut, N. H. et al. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol. Cell 49, 158–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Ding, N. et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 153, 601–613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miranda, T. B. et al. Reprogramming the chromatin landscape: interplay of the estrogen and glucocorticoid receptors at the genomic level. Cancer Res. 73, 5130–5139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carroll, J. S. et al. Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. 38, 1289–1297 (2006). This study uses ChIP–seq to delineate the crosstalk between ER and GR in breast cells.

    Article  CAS  PubMed  Google Scholar 

  29. Feldmann, R. et al. Genome-wide analysis of LXRalpha activation reveals new transcriptional networks in human atherosclerotic foam cells. Nucleic Acids Res. 41, 3518–3531 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pomerantz, M. M. et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat. Genet. 47, 1346–1351 (2015). This study demonstrates that prostate cells undergo AR reprogramming upon transformation and shows that the presence of FOXA1 and HOXB13 is sufficient for AR reprogramming.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vuong, L. M. et al. Differential effects of hepatocyte nuclear factor 4α isoforms on tumor growth and T-cell factor 4/AP-1 interactions in human colorectal cancer cells. Mol. Cell. Biol. 35, 3471–3490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Downes, M. et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell 11, 1079–1092 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goddard, L. M. et al. Progesterone receptor in the vascular endothelium triggers physiological uterine permeability preimplantation. Cell 156, 549–562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Csomos, K., Nemet, I., Fesus, L. & Balajthy, Z. Tissue transglutaminase contributes to the all-trans-retinoic acid-induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia. Blood 116, 3933–3943 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Tang, Q. et al. A comprehensive view of nuclear receptor cancer cistromes. Cancer Res. 71, 6940–6947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Santagata, S. et al. Taxonomy of breast cancer based on normal cell phenotype predicts outcome. J. Clin. Invest. 124, 859–870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kelloff, G. J. & Sigman, C. C. Cancer biomarkers: selecting the right drug for the right patient. Nat. Rev. Drug Discov. 11, 201–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Hua, S., Kittler, R. & White, K. P. Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137, 1259–1271 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mohammed, H. et al. Progesterone receptor modulates ERα action in breast cancer. Nature 523, 313–317 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharma, N. L. et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 23, 35–47 (2013). In this study, ChIP–seq was performed on human prostate tissue samples to establish a gene signature set that was better able to predict CRPC than previous gene signatures.

    Article  CAS  PubMed  Google Scholar 

  47. Yu, J. et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, Q. et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138, 245–256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Decker, K. F. et al. Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions. Nucleic Acids Res. 40, 10765–10779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arora, V. K. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013). This study uses genomic profiling approaches to show that the GR can help confer resistance to AR-targeted therapies by binding to many AR sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Katzenwadel, A. & Wolf, P. Androgen deprivation of prostate cancer: leading to a therapeutic dead end. Cancer Lett. 367, 12–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin, C. Y. et al. Discovery of estrogen receptor α target genes and response elements in breast tumor cells. Genome Biol. 5, R66 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lin, C. Y. et al. Whole-genome cartography of estrogen receptor α binding sites. PLoS Genet. 3, e87 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hua, S. et al. Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol. Syst. Biol. 4, 188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012). This is the first paper to report on the application of ChIP–seq to frozen breast cancer tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Droog, M. et al. Estrogen receptor α wields treatment-specific enhancers between morphologically similar endometrial tumors. Proc. Natl Acad. Sci. USA 114, E1316–E1325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012). This is the initial hallmark ENCODE paper.

    Article  CAS  Google Scholar 

  61. Gerstein, M. B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moorman, C. et al. Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 103, 12027–12032 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, H. et al. Functional annotation of HOT regions in the human genome: implications for human disease and cancer. Sci. Rep. 5, 11633 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yip, K. Y. et al. Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors. Genome Biol. 13, R48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gertz, J. et al. Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol. Cell 52, 25–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Guertin, M. J., Zhang, X., Coonrod, S. A. & Hager, G. L. Transient estrogen receptor binding and p300 redistribution support a squelching mechanism for estradiol-repressed genes. Mol. Endocrinol. 28, 1522–1533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Casciello, F., Windloch, K., Gannon, F. & Lee, J. S. Functional role of G9a histone methyltransferase in cancer. Front. Immunol. 6, 487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bittencourt, D. et al. G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of glucocorticoid receptor target genes. Proc. Natl Acad. Sci. USA 109, 19673–19678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dhiman, V. K., Attwood, K., Campbell, M. J. & Smiraglia, D. J. Hormone stimulation of androgen receptor mediates dynamic changes in DNA methylation patterns at regulatory elements. Oncotarget 6, 42575–42589 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Metivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Singh, P. K. et al. Epigenetic distortion to VDR transcriptional regulation in prostate cancer cells. J. Steroid Biochem. Mol. Biol. 136, 258–263 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Long, M. D. et al. Integrative genomic analysis in K562 chronic myelogenous leukemia cells reveals that proximal NCOR1 binding positively regulates genes that govern erythroid differentiation and Imatinib sensitivity. Nucleic Acids Res. 43, 7330–7348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Singh, P. K. et al. Integration of VDR genome wide binding and GWAS genetic variation data reveals co-occurrence of VDR and NF-κB binding that is linked to immune phenotypes. BMC Genomics 18, 132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lim, H. W. et al. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Res. 25, 836–844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Meyer, M. B., Goetsch, P. D. & Pike, J. W. Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone. J. Steroid Biochem. Mol. Biol. 121, 136–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sahu, B. et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J. 30, 3962–3976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012). This study uncovers how EZH2 can act as a co-activator of AR, which is contrary to its canonical role as a transcriptional repressor via its histone methyltransferase activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chng, K. R. et al. A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J. 31, 2810–2823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Lapointe, J. et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl Acad. Sci. USA 101, 811–816 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Drukker, C. A. et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int. J. Cancer 133, 929–936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Thorson, P., Vollmer, R. T., Arcangeli, C., Keetch, D. W. & Humphrey, P. A. Minimal carcinoma in prostate needle biopsy specimens: diagnostic features and radical prostatectomy follow-up. Mod. Pathol. 11, 543–551 (1998).

    CAS  PubMed  Google Scholar 

  84. Knezevic, D. et al. Analytical validation of the Oncotype DX prostate cancer assay — a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics 14, 690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Evans, R. M. The steroid and thyroid hormone receptor superfamily. Science 240, 889–895 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Giguere, V., Ong, E. S., Segui, P. & Evans, R. M. Identification of a receptor for the morphogen retinoic acid. Nature 330, 624–629 (1987).

    Article  CAS  PubMed  Google Scholar 

  87. Mangelsdorf, D. J. & Evans, R. M. The RXR heterodimers and orphan receptors. Cell 83, 841–850 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Umesono, K. & Evans, R. M. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57, 1139–1146 (1989).

    Article  CAS  PubMed  Google Scholar 

  89. Peters, A. A. et al. Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res. 69, 6131–6140 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Muscat, G. E. et al. Research resource: nuclear receptors as transcriptome: discriminant and prognostic value in breast cancer. Mol. Endocrinol. 27, 350–365 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Long, M. D. et al. Cooperative behavior of the nuclear receptor superfamily and its deregulation in prostate cancer. Carcinogenesis 35, 262–271 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Lanz, R. B. et al. Nuclear Receptor Signaling Atlas (www.nursa.org): hyperlinking the nuclear receptor signaling community. Nucleic Acids Res. 34, D221–D226 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Qin, B. et al. CistromeMap: a knowledgebase and web server for ChIP-Seq and DNase-Seq studies in mouse and human. Bioinformatics 28, 1411–1412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fingerman, I. M. et al. NCBI Epigenomics: a new public resource for exploring epigenomic data sets. Nucleic Acids Res. 39, D908–D912 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Dilworth, F. J. & Chambon, P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 20, 3047–3054 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, M. C., Hsu, S. L., Lin, H. & Yang, T. Y. Retinoic acid and cancer treatment. Biomed. 4, 22 (2014).

    Article  Google Scholar 

  97. Huang, M. E. et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72, 567–572 (1988).

    CAS  PubMed  Google Scholar 

  98. Tallman, M. S. et al. All-trans-retinoic acid in acute promyelocytic leukemia. N. Engl. J. Med. 337, 1021–1028 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Roman, S. D. et al. Estradiol induction of retinoic acid receptors in human breast cancer cells. Cancer Res. 53, 5940–5945 (1993).

    CAS  PubMed  Google Scholar 

  100. Lotan, R. Different susceptibilities of human melanoma and breast carcinoma cell lines to retinoic acid-induced growth inhibition. Cancer Res. 39, 1014–1019 (1979).

    CAS  PubMed  Google Scholar 

  101. Ross-Innes, C. S. et al. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev. 24, 171–182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Freemantle, S. J., Spinella, M. J. & Dmitrovsky, E. Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene 22, 7305–7315 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Brugnatelli, S. et al. Single-dose palonosetron and dexamethasone in preventing nausea and vomiting induced by moderately emetogenic chemotherapy in breast and colorectal cancer patients. Tumori 97, 362–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Belova, L. et al. Glucocorticoid receptor expression in breast cancer associates with older patient age. Breast Cancer Res. Treat. 116, 441–447 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Vaidya, J. S., Baldassarre, G., Thorat, M. A. & Massarut, S. Role of glucocorticoids in breast cancer. Curr. Pharm. Des. 16, 3593–3600 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Smith, R. A., Lea, R. A., Curran, J. E., Weinstein, S. R. & Griffiths, L. R. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue. Breast Cancer Res. 5, R9–R12 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Bolt, M. J. et al. Coactivators enable glucocorticoid receptor recruitment to fine-tune estrogen receptor transcriptional responses. Nucleic Acids Res. 41, 4036–4048 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Swinstead, E. E. et al. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell 165, 593–605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. West, D. C. et al. GR and ER co-activation alters the expression of differentiation genes and associates with improved ER+ breast cancer outcome. Mol. Cancer Res. 14, 707–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pan, D., Kocherginsky, M. & Conzen, S. D. Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res. 71, 6360–6370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gong, H. et al. Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Res. 68, 7386–7393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Robertshaw, I., Bian, F. & Das, S. K. Mechanisms of uterine estrogen signaling during early pregnancy in mice: an update. J. Mol. Endocrinol. 56, R127–R138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wetendorf, M. & DeMayo, F. J. Progesterone receptor signaling in the initiation of pregnancy and preservation of a healthy uterus. Int. J. Dev. Biol. 58, 95–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Maybin, J. A. & Critchley, H. O. Progesterone: a pivotal hormone at menstruation. Ann. NY Acad. Sci. 1221, 88–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, C. F. & Yen, S. S. Direct evidence of estrogen modulation of pituitary sensitivity to luteinizing hormone-releasing factor during the menstrual cycle. J. Clin. Invest. 55, 201–204 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou, L. et al. Progesterone suppresses triple-negative breast cancer growth and metastasis to the brain via membrane progesterone receptor α. Int. J. Mol. Med. 40, 755–761 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Totta, P., Pesiri, V., Marino, M. & Acconcia, F. Lysosomal function is involved in 17β-estradiol-induced estrogen receptor α degradation and cell proliferation. PLoS ONE 9, e94880 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Giulianelli, S. et al. Estrogen receptor α mediates progestin-induced mammary tumor growth by interacting with progesterone receptors at the cyclin D1/MYC promoters. Cancer Res. 72, 2416–2427 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Singhal, H. et al. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer. Sci. Adv. 2, e1501924 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Becker-Andre, M., Andre, E. & DeLamarter, J. F. Identification of nuclear receptor mRNAs by RT-PCR amplification of conserved zinc-finger motif sequences. Biochem. Biophys. Res. Commun. 194, 1371–1379 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Krylova, I. N. et al. Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120, 343–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Chand, A. L., Herridge, K. A., Thompson, E. W. & Clyne, C. D. The orphan nuclear receptor LRH-1 promotes breast cancer motility and invasion. Endocr. Relat. Cancer 17, 965–975 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Lazarus, K. A. et al. Oestradiol reduces liver receptor homolog-1 mRNA transcript stability in breast cancer cell lines. Biochem. Biophys. Res. Commun. 438, 533–539 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Lazarus, K. A. et al. Conditional overexpression of liver receptor homolog-1 in female mouse mammary epithelium results in altered mammary morphogenesis via the induction of TGF-β. Endocrinology 155, 1606–1617 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Bianco, S., Jangal, M., Garneau, D. & Gevry, N. LRH-1 controls proliferation in breast tumor cells by regulating CDKN1A gene expression. Oncogene 34, 4509–4518 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Chand, A. L., Herridge, K. A., Howard, T. L., Simpson, E. R. & Clyne, C. D. Tissue-specific regulation of aromatase promoter II by the orphan nuclear receptor LRH-1 in breast adipose stromal fibroblasts. Steroids 76, 741–744 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Bianco, S., Brunelle, M., Jangal, M., Magnani, L. & Gevry, N. LRH-1 governs vital transcriptional programs in endocrine-sensitive and -resistant breast cancer cells. Cancer Res. 74, 2015–2025 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Thiruchelvam, P. T. et al. The liver receptor homolog-1 regulates estrogen receptor expression in breast cancer cells. Breast Cancer Res. Treat. 127, 385–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Lai, C. F. et al. Co-regulated gene expression by oestrogen receptor α and liver receptor homolog-1 is a feature of the oestrogen response in breast cancer cells. Nucleic Acids Res. 41, 10228–10240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dirican, E., Akkiprik, M. & Ozer, A. Mutation distributions and clinical correlations of PIK3CA gene mutations in breast cancer. Tumour Biol. 37, 7033–7045 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Nelson, E. R. et al. 27-hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342, 1094–1098 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Svensson, S. et al. Crystal structure of the heterodimeric complex of LXRα and RXRβ ligand-binding domains in a fully agonistic conformation. EMBO J. 22, 4625–4633 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. El Roz, A., Bard, J. M., Huvelin, J. M. & Nazih, H. The anti-proliferative and pro-apoptotic effects of the trans9, trans11 conjugated linoleic acid isomer on MCF-7 breast cancer cells are associated with LXR activation. Prostaglandins Leukot. Essent. Fatty Acids 88, 265–272 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Chuu, C. P. & Lin, H. P. Antiproliferative effect of LXR agonists T0901317 and 22(R)-hydroxycholesterol on multiple human cancer cell lines. Anticancer Res. 30, 3643–3648 (2010).

    CAS  PubMed  Google Scholar 

  136. El Roz, A., Bard, J. M., Huvelin, J. M. & Nazih, H. LXR agonists and ABCG1-dependent cholesterol efflux in MCF-7 breast cancer cells: relation to proliferation and apoptosis. Anticancer Res. 32, 3007–3013 (2012).

    CAS  PubMed  Google Scholar 

  137. Nguyen-Vu, T. et al. Liver x receptor ligands disrupt breast cancer cell proliferation through an E2F-mediated mechanism. Breast Cancer Res. 15, R51 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Savic, D. et al. Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation. Genome Med. 8, 74 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Babeu, J. P. & Boudreau, F. Hepatocyte nuclear factor 4-α involvement in liver and intestinal inflammatory networks. World J. Gastroenterol. 20, 22–30 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Darsigny, M. et al. Hepatocyte nuclear factor-4α promotes gut neoplasia in mice and protects against the production of reactive oxygen species. Cancer Res. 70, 9423–9433 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Xie, T. et al. A comprehensive characterization of genome-wide copy number aberrations in colorectal cancer reveals novel oncogenes and patterns of alterations. PLoS ONE 7, e42001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Schwartz, B. et al. Inhibition of colorectal cancer by targeting hepatocyte nuclear factor-4α. Int. J. Cancer 124, 1081–1089 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Algamas-Dimantov, A., Yehuda-Shnaidman, E., Peri, I. & Schwartz, B. Epigenetic control of HNF-4 α in colon carcinoma cells affects MUC4 expression and malignancy. Cell. Oncol. 36, 155–167 (2013).

    Article  CAS  Google Scholar 

  144. Saandi, T. et al. Regulation of the tumor suppressor homeogene Cdx2 by HNF4α in intestinal cancer. Oncogene 32, 3782–3788 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Sun, Y. et al. The pro-apoptotic role of the regulatory feedback loop between miR-124 and PKM1/HNF4α in colorectal cancer cells. Int. J. Mol. Sci. 15, 4318–4332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA 108, 12372–12377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Murtha, M. et al. FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells. Nat. Methods 11, 559–565 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rhee, H. S. & Pugh, B. F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408–1419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 46, 1160–1165 (2014). This study analyses over 800 tumours from the Cancer Genome Atlas to systematically identify recurrent somatic non-coding mutations in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Toy, W. et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45, 1439–1445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Robinson, D. R. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45, 1446–1451 (2013). Refs 155 and 156 are genomic studies that uncover novel ER mutations in patients resistant to anti-oestrogen therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fumagalli, D. et al. Somatic mutation, copy number and transcriptomic profiles of primary and matched metastatic estrogen receptor-positive breast cancers. Ann. Oncol. 27, 1860–1866 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Merenbakh-Lamin, K. et al. D538G mutation in estrogen receptor-α: a novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res. 73, 6856–6864 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Jeselsohn, R., Buchwalter, G., De Angelis, C., Brown, M. & Schiff, R. ESR1 mutations — a mechanism for acquired endocrine resistance in breast cancer. Nat. Rev. Clin. Oncol. 12, 573–583 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015). This study uses genomic approaches to interrogate 150 patients with metastatic CRPC and defines the mutational landscape in these patients, supporting the concept of prospective genomics for personalized medicine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gottlieb, B., Beitel, L. K., Nadarajah, A., Paliouras, M. & Trifiro, M. The androgen receptor gene mutations database: 2012 update. Hum. Mutat. 33, 887–894 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Korpal, M. et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 3, 1030–1043 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Tan, J. et al. Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol. Endocrinol. 11, 450–459 (1997).

    Article  CAS  PubMed  Google Scholar 

  166. Veldscholte, J. et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540 (1990).

    Article  CAS  PubMed  Google Scholar 

  167. Anantharaman, A. & Friedlander, T. W. Targeting the androgen receptor in metastatic castrate-resistant prostate cancer: a review. Urol. Oncol. 34, 356–367 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Joseph, J. D. et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov. 3, 1020–1029 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  170. Zacheis, D. et al. Heteroarotinoids inhibit head and neck cancer cell lines in vitro and in vivo through both RAR and RXR retinoic acid receptors. J. Med. Chem. 42, 4434–4445 (1999).

    Article  CAS  PubMed  Google Scholar 

  171. dos Santos, M. L. et al. The CAG repeat polymorphism in the androgen receptor gene (AR) and its relationship to head and neck cancer. Oral Oncol. 40, 177–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Harris, G., Ghazallah, R. A., Nascene, D., Wuertz, B. & Ondrey, F. G. PPAR activation and decreased proliferation in oral carcinoma cells with 4-HPR. Otolaryngol. Head Neck Surg. 133, 695–701 (2005).

    Article  PubMed  Google Scholar 

  173. Liu, Z. et al. Polymorphisms of vitamin D receptor gene protect against the risk of head and neck cancer. Pharmacogenet. Genom. 15, 159–165 (2005).

    Article  Google Scholar 

  174. Sumida, T., Ishikawa, A. & Mori, Y. Stimulation of the estrogen axis induces epithelial-mesenchymal transition in human salivary cancer cells. Cancer Genom. Proteom. 13, 305–310 (2016).

    CAS  Google Scholar 

  175. Hu, X. Q., Chen, W. L., Ma, H. G. & Jiang, K. Androgen receptor expression identifies patient with favorable outcome in operable triple negative breast cancer. Oncotarget 8, 56364–56374. (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Lanari, C. et al. The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer. Endocr. Relat. Cancer 16, 333–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Garattini, E. et al. Retinoids and breast cancer: from basic studies to the clinic and back again. Cancer Treat. Rev. 40, 739–749 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Liu, N. et al. Hepatocarcinogenesis in FXR−/− mice mimics human HCC progression that operates through HNF1α regulation of FXR expression. Mol. Endocrinol. 26, 775–785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li, G. et al. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice. Toxicol. Appl. Pharmacol. 272, 299–305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Patitucci, C. et al. Hepatocyte nuclear factor 1α suppresses steatosis-associated liver cancer by inhibiting PPARγ transcription. J. Clin. Invest. 127, 1873–1888 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Hung, C. H. et al. Significance of vitamin D receptor gene polymorphisms for risk of hepatocellular carcinoma in chronic hepatitis C. Transl Oncol. 7, 503–507 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Nguyen-Vu, T. et al. Estrogen receptor β reduces colon cancer metastasis through a novel miR-205 - PROX1 mechanism. Oncotarget 7, 42159–42171 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Coste, A. et al. LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proc. Natl Acad. Sci. USA 104, 13098–13103 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cesario, R. M., Stone, J., Yen, W. C., Bissonnette, R. P. & Lamph, W. W. Differentiation and growth inhibition mediated via the RXR:PPARγ heterodimer in colon cancer. Cancer Lett. 240, 225–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Elimrani, I. et al. Vitamin D reduces colitis- and inflammation-associated colorectal cancer in mice independent of NOD2. Nutr. Cancer 69, 276–288 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Applegate, C. C. & Lane, M. A. Role of retinoids in the prevention and treatment of colorectal cancer. World J. Gastrointest. Oncol. 7, 184–203 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Boorjian, S. et al. Androgen receptor expression is inversely correlated with pathologic tumor stage in bladder cancer. Urology 64, 383–388 (2004).

    Article  PubMed  Google Scholar 

  188. Shen, S. S. et al. Expression of estrogen receptors-α and -β in bladder cancer cell lines and human bladder tumor tissue. Cancer 106, 2610–2616 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Mashhadi, R. et al. Role of steroid hormone receptors in formation and progression of bladder carcinoma: a case-control study. Urol. J. 11, 1968–1973 (2014).

    PubMed  Google Scholar 

  190. Wu, J., Liu, J., Jia, R. & Song, H. Nur77 inhibits androgen-induced bladder cancer growth. Cancer Invest. 31, 654–660 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Inamoto, T., Czerniak, B. A., Dinney, C. P. & Kamat, A. M. Cytoplasmic mislocalization of the orphan nuclear receptor Nurr1 is a prognostic factor in bladder cancer. Cancer 116, 340–346 (2010).

    Article  PubMed  Google Scholar 

  192. Zhao, X. Y. et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med. 6, 703–706 (2000).

    Article  CAS  PubMed  Google Scholar 

  193. Wu, D. et al. Orphan nuclear receptor TLX functions as a potent suppressor of oncogene-induced senescence in prostate cancer via its transcriptional co-regulation of the CDKN1A (p21WAF1/CIP1) and SIRT1 genes. J. Pathol. 236, 103–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  194. Yu, S., Wang, X., Ng, C. F., Chen, S. & Chan, F. L. ERRγ suppresses cell proliferation and tumor growth of androgen-sensitive and androgen-insensitive prostate cancer cells and its implication as a therapeutic target for prostate cancer. Cancer Res. 67, 4904–4914 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Mu, X. & Chang, C. TR2 orphan receptor functions as negative modulator for androgen receptor in prostate cancer cells PC-3. Prostate 57, 129–133 (2003).

    Article  CAS  PubMed  Google Scholar 

  196. Wu, D., Cheung, A., Wang, Y., Yu, S. & Chan, F. L. The emerging roles of orphan nuclear receptors in prostate cancer. Biochim. Biophys. Acta 1866, 23–36 (2016).

    CAS  PubMed  Google Scholar 

  197. Wang, J., Yang, J., Zou, Y., Huang, G. L. & He, Z. W. Orphan nuclear receptor Nurr1 as a potential novel marker for progression in human prostate cancer. Asian Pac. J. Cancer Prev. 14, 2023–2028 (2013).

    Article  PubMed  Google Scholar 

  198. Guan, B., Li, H., Yang, Z., Hoque, A. & Xu, X. Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer 119, 1321–1329 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Srivastava, N. et al. Inhibition of cancer cell proliferation by PPARγ is mediated by a metabolic switch that increases reactive oxygen species levels. Cell Metab. 20, 650–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Recchia, A. G. et al. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells. Int. J. Biochem. Cell Biol. 41, 603–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Fu, Y., Li, J. & Zhang, Y. Polymorphisms in the vitamin D receptor gene and the lung cancer risk. Tumour Biol. 35, 1323–1330 (2014).

    Article  CAS  PubMed  Google Scholar 

  202. Hermann, T. W. et al. The retinoid X receptor agonist bexarotene (Targretin) synergistically enhances the growth inhibitory activity of cytotoxic drugs in non-small cell lung cancer cells. Lung Cancer 50, 9–18 (2005).

    Article  PubMed  Google Scholar 

  203. Guan, Y. & Breyer, M. D. Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney Int. 60, 14–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Hedrick, E. et al. Nuclear receptor 4A1 (NR4A1) as a drug target for renal cell adenocarcinoma. PLoS ONE 10, e0128308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kamiya, Y. et al. Expression of mutant thyroid hormone nuclear receptors is associated with human renal clear cell carcinoma. Carcinogenesis 23, 25–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  206. Prestin, K. et al. Modulation of expression of the nuclear receptor NR0B2 (small heterodimer partner 1) and its impact on proliferation of renal carcinoma cells. OncoTargets Ther. 9, 4867–4878 (2016).

    Article  CAS  Google Scholar 

  207. O'Donnell, A. J., Macleod, K. G., Burns, D. J., Smyth, J. F. & Langdon, S. P. Estrogen receptor-α mediates gene expression changes and growth response in ovarian cancer cells exposed to estrogen. Endocr. Relat. Cancer 12, 851–866 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Docquier, A. et al. Negative regulation of estrogen signaling by ERβ and RIP140 in ovarian cancer cells. Mol. Endocrinol. 27, 1429–1441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sun, P. et al. Expression of estrogen receptor-related receptors, a subfamily of orphan nuclear receptors, as new tumor biomarkers in ovarian cancer cells. J. Mol. Med. 83, 457–467 (2005).

    Article  CAS  PubMed  Google Scholar 

  210. Wu, N. Y. et al. Progesterone prevents high-grade serous ovarian cancer by inducing necroptosis of p53-defective fallopian tube epithelial cells. Cell Rep. 18, 2557–2565 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. [No authors listed.] LXR agonism inhibits metastatic melanoma through activation of ApoE. Cancer Discov 4, OF16 (2014).

  212. Chakravarti, N. et al. Decreased expression of retinoid receptors in melanoma: entailment in tumorigenesis and prognosis. Clin. Cancer Res. 13, 4817–4824 (2007).

    Article  CAS  PubMed  Google Scholar 

  213. Papi, A., Rocchi, P., Ferreri, A. M., Guerra, F. & Orlandi, M. Enhanced effects of PPARγ ligands and RXR selective retinoids in combination to inhibit migration and invasiveness in cancer cells. Oncol. Rep. 21, 1083–1089 (2009).

    CAS  PubMed  Google Scholar 

  214. Jeselsohn, R. M. et al. Digital quantification of gene expression in sequential breast cancer biopsies reveals activation of an immune response. PLoS ONE 8, e64225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Aleskandarany, M. A. et al. Prognostic significance of androgen receptor expression in invasive breast cancer: transcriptomic and protein expression analysis. Breast Cancer Res. Treat. 159, 215–227 (2016).

    Article  CAS  PubMed  Google Scholar 

  216. Ianculescu, I., Wu, D. Y., Siegmund, K. D. & Stallcup, M. R. Selective roles for cAMP response element-binding protein binding protein and p300 protein as coregulators for androgen-regulated gene expression in advanced prostate cancer cells. J. Biol. Chem. 287, 4000–4013 (2012).

    Article  CAS  PubMed  Google Scholar 

  217. Debes, J. D. et al. p300 regulates androgen receptor-independent expression of prostate-specific antigen in prostate cancer cells treated chronically with interleukin-6. Cancer Res. 65, 5965–5973 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Stephens, P. J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Godoy, A. S. et al. Altered corepressor SMRT expression and recruitment to target genes as a mechanism that change the response to androgens in prostate cancer progression. Biochem. Biophys. Res. Commun. 423, 564–570 (2012).

    Article  CAS  PubMed  Google Scholar 

  220. Suresh, S. et al. SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer. PLoS Genet. 13, e1006650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Dasgupta, S. et al. Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis. J. Clin. Invest. 125, 1174–1188 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Osborne, C. K. et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl Cancer Inst. 95, 353–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  223. Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7, 823–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  224. Ford, D. J. & Dingwall, A. K. The cancer COMPASS: navigating the functions of MLL complexes in cancer. Cancer Genet. 208, 178–191 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. Malik, R. et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat. Med. 21, 344–352 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Mann, M., Cortez, V. & Vadlamudi, R. PELP1 oncogenic functions involve CARM1 regulation. Carcinogenesis 34, 1468–1475 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ou, C. Y. et al. A coactivator role of CARM1 in the dysregulation of β-catenin activity in colorectal cancer cell growth and gene expression. Mol. Cancer Res. 9, 660–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Dasgupta, S. & O'Malley, B. W. Transcriptional coregulators: emerging roles of SRC family of coactivators in disease pathology. J. Mol. Endocrinol. 53, R47–R59 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Purcell, D. J. et al. Recruitment of coregulator G9a by Runx2 for selective enhancement or suppression of transcription. J. Cell. Biochem. 113, 2406–2414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Forde for technical assistance in creating Fig. 3.

Author information

Authors and Affiliations

Authors

Contributions

V.K.D. and M.B. researched data for the article. V.K.D., M.B. and K.P.W. discussed the content of the article and reviewed and/or edited the manuscript before submission. All authors contributed to writing the article.

Corresponding author

Correspondence to Kevin P. White.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Ligands

Hydrophobic molecules that bind nuclear receptors and induce a conformational change in the receptor, which results in recruitment of co-regulator complexes.

Chromatin

A highly condensed structure of DNA that is associated with histone proteins and other DNA binding proteins.

Chromatin immunoprecipitation followed by sequencing

(ChIP–seq). The combination of chromatin immunoprecipitation (ChIP) experiments with high-throughput sequencing to quantitatively analyse protein targeting or chromatin modifications across the entire genome.

DNase I–sequencing

DNase I digestion followed by sequencing. A method that distinguishes open chromatin regions based on their hypersensitivity to DNase I digestion. Sequencing these genomic fragments can generate genome-wide maps of chromatin accessibility.

ATAC-seq

Assay for transposase-accessible chromatin using sequencing. An experimental technique used to study chromatin accessibility that uses transposase Tn5 to cut exposed regions of the DNA.

RNA sequencing

(RNA-seq). An experimental protocol that uses next-generation sequencing technologies to sequence the RNA molecules within a biological sample in an effort to determine the primary sequence and relative abundance of each RNA.

Transcriptional profiling

The quantification of the expression of thousands of genes at once to create a global assessment of cellular function.

Cistrome

A term used to describe the set of cis-acting targets of trans-acting factors on a genome-wide scale, which are typically identified through the use of chromatin immunoprecipitation followed by sequencing and chromatin immunoprecipitation followed by microarray assays.

Global run-on sequencing

(GRO-seq). An assay used to identify and quantify nascent transcribed RNA (that is, transcripts that were initiated at the time of nuclei isolation) throughout the genome using deep sequencing.

Pioneer factor

A protein that binds condensed chromatin before the binding of other proteins and is important in the recruitment of other transcription factors and chromatin modifiers to help initiate transcription.

Enhancer RNA

A class of short non-coding RNA molecules that are transcribed from the DNA sequence of enhancer regions. It remains unclear whether they merely represent enhancer activation or have a functional significance.

ChIP–chip

Chromatin immunoprecipitation (ChIP) experiments combined with DNA microarrays to profile protein targeting or chromatin modifications over large genomic regions.

Transcriptome

The set of all mRNA molecules in any given cell or population of cells.

DNase I hypersensitivity

Pertains to regions of the genome that are sensitive to the binding of, and resulting cleavage by, the enzyme DNase I. This accessibility to DNase I is indicative of an open chromatin state that is permissive for transcription factor binding.

Warburg effect

The observation by Warburg in the 1920s that, in contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate energy, tumour cells exhibit increased aerobic glycolysis and use of glucose. Although aerobic glycolysis was initially proposed by Warburg to be due to mitochondrial impairment, recent studies have shown a preferential switch to glycolysis in tumour cells with functional mitochondria.

Promoter pausing

A method used by the cell to regulate active transcription. By pausing RNA polymerase II, active transcription is stopped until external stimuli are present to signal transcription elongation to proceed.

Precision medicine

An approach to medical care that is designed and optimized based on each individual, rather than relying solely on therapeutic approaches that are based on general population characteristics from broad epidemiological studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, V., Bolt, M. & White, K. Nuclear receptors in cancer — uncovering new and evolving roles through genomic analysis. Nat Rev Genet 19, 160–174 (2018). https://doi.org/10.1038/nrg.2017.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2017.102

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer