Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing ancient genomes to study the history of human adaptation

Key Points

  • Ancient DNA provides transformative insight into the history of human adaptation via the ability to directly track genetic variant frequency changes across space and time.

  • Analyses of human, archaic hominin, and domesticated plant and animal ancient genomic data sets can each inform our understanding of past human evolution and behaviour.

  • The number of published ancient genomic data sets is growing substantially each year, contributing expanded precision and power to evolutionary analyses based on these data.

  • Human ancient genome data have already helped characterize the histories of biological adaptations to northern latitudes and cold climates, agriculture-associated dietary shifts, and a changing infectious disease landscape.

  • After migrating out of Africa, ancient human populations acquired genetic variants conferring fitness advantages in Eurasian environments through adaptive introgression with archaic hominin populations who had already been inhabiting this region for hundreds of thousands of years.

  • Ancient genome data reveal some substantial time lags between documented environmental or cultural changes and the appearance and spread of genetic variants associated with human biological adaptations, with possible implications for intervening human health and/or potential compensatory cultural behaviours.

Abstract

The past several years have witnessed an explosion of successful ancient human genome-sequencing projects, with genomic-scale ancient DNA data sets now available for more than 1,100 ancient human and archaic hominin (for example, Neandertal) individuals. Recent 'evolution in action' analyses have started using these data sets to identify and track the spatiotemporal trajectories of genetic variants associated with human adaptations to novel and changing environments, agricultural lifestyles, and introduced or co-evolving pathogens. Together with evidence of adaptive introgression of genetic variants from archaic hominins to humans and emerging ancient genome data sets for domesticated animals and plants, these studies provide novel insights into human evolution and the evolutionary consequences of human behaviour that go well beyond those that can be obtained from modern genomic data or the fossil and archaeological records alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The recent (and ongoing) ancient genomic explosion.
Figure 2: Ancient genomic signatures of positive natural selection.
Figure 3: Biocultural adaptation to dairying and milk consumption.
Figure 4: Adaptive archaic introgression.
Figure 5: Insights into the timing of different trait evolution processes for domesticated species based on ancient DNA.

Similar content being viewed by others

References

  1. Huxley, T. H. Evidence as to Man's Place in Nature (Williams and Norgate, 1863).

    Google Scholar 

  2. Darwin, C. The Descent of Man, and Selection in Relation to Sex (John Murray, 1871).

    Book  Google Scholar 

  3. Fan, S., Hansen, M. E. B., Lo, Y. & Tishkoff, S. A. Going global by adapting local: A review of recent human adaptation. Science 354, 54–59 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laland, K. N., Odling-Smee, J. & Myles, S. How culture shaped the human genome: bringing genetics and the human sciences together. Nat. Rev. Genet. 11, 137–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Scheinfeldt, L. B. & Tishkoff, S. A. Recent human adaptation: genomic approaches, interpretation and insights. Nat. Rev. Genet. 14, 692–702 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Raj, T. et al. Common risk alleles for inflammatory diseases are targets of recent positive selection. Am. J. Hum. Genet. 92, 517–529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Natarajan, V. T. et al. IFN-γ signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation. Proc. Natl Acad. Sci. USA 111, 2301–2306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Norton, H. L. et al. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol. Biol. Evol. 24, 710–722 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Pickrell, J. K. & Reich, D. Toward a new history and geography of human genes informed by ancient DNA. Trends Genet. 30, 377–389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nielsen, R. et al. Tracing the peopling of the world through genomics. Nature 541, 302–310 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Orlando, L., Gilbert, M. T. P. & Willerslev, E. Reconstructing ancient genomes and epigenomes. Nat. Rev. Genet. 16, 395–408 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Llamas, B., Willerslev, E. & Orlando, L. Human evolution: a tale from ancient genomes. Phil. Trans. R. Soc. B 372, 20150484 (2016).

    Article  CAS  Google Scholar 

  15. Nakagome, S. et al. Estimating the ages of selection signals from different epochs in human history. Mol. Biol. Evol. 33, 657–669 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Field, Y. et al. Detection of human adaptation during the past 2000 years. Science 354, 760–764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malaspinas, A.-S., Malaspinas, O., Evans, S. N. & Slatkin, M. Estimating allele age and selection coefficient from time-serial data. Genetics 192, 599–607 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sams, A. J., Hawks, J. & Keinan, A. The utility of ancient human DNA for improving allele age estimates, with implications for demographic models and tests of natural selection. J. Hum. Evol. 79, 64–72 (2015).

    Article  PubMed  Google Scholar 

  19. Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015). This paper performed a genome-wide scan for signatures of positive selection with ancient genome data from 230 Europeans (!8,500–2,300 years BP ) and characterized the spatiotemporal frequency trajectories of adaptive alleles related to diet, skin pigmentation, stature and the immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gelabert, P., Olalde, I., de-Dios, T., Civit, S. & Lalueza-Fox, C. Malaria was a weak selective force in ancient Europeans. Sci. Rep. 7, 1377 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Buckley, M. T. et al. Selection in Europeans on fatty acid desaturases associated with dietary changes. Mol. Biol. Evol. 34, 1307–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ye, K., Gao, F., Wang, D., Bar-Yosef, O. & Keinan, A. Dietary adaptation of FADS genes in Europe varied across time and geography. Nat. Ecol. Evol. 1, 0167 (2017).

    Article  Google Scholar 

  24. Sverrisdóttir, O. Ó. et al. Direct estimates of natural selection in Iberia indicate calcium absorption was not the only driver of lactase persistence in Europe. Mol. Biol. Evol. 31, 975–983 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Günther, T. et al. Genomics of Mesolithic Scandinavia reveal colonization routes and high-latitude adaptation. Preprint at bioRxiv http://dx.doi.org/10.1101/164400 (2017). This study conducted a genome-wide scan of positive selection using ancient genome data from seven Scandinavian individuals (!9,500–6,000 years BP ) to reveal a haplotype that the authors propose may underlie physiological adaptation to cold climate.

  26. Stephan, W. Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation. Mol. Ecol. 25, 79–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Haak, W. et al. Massive migration from the steppe was a source for Indo–European languages in Europe. Nature 522, 207–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Preprint at bioRxiv http://dx.doi.org/10.1101/135962 (2017).

  30. Cassidy, L. M. et al. Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc. Natl Acad. Sci. USA 113, 368–373 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Shennan, S. Evolutionary demography and the population history of the European early Neolithic. Hum. Biol. 81, 339–355 (2009).

    Article  PubMed  Google Scholar 

  32. Leonardi, M. et al. Evolutionary patterns and processes: lessons from ancient DNA. Syst. Biol. 66, e1–e29 (2017).

    PubMed  Google Scholar 

  33. Mirazón Lahr, M. The shaping of human diversity: filters, boundaries and transitions. Phil. Trans. R. Soc. B 371, http://dx.doi.org/10.1098/rstb.2015.0241 (2016).

  34. Stewart, J. R. & Stringer, C. B. Human evolution out of Africa: the role of refugia and climate change. Science 335, 1317–1321 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Richards, M. A brief review of the archaeological evidence for Palaeolithic and Neolithic subsistence. Eur. J. Clin. Nutr. 56, 1262–1278 (2002).

    Article  Google Scholar 

  36. Perry, G. H. Parasites and human evolution. Evol. Anthropol. 23, 218–228 (2014).

    Article  PubMed  Google Scholar 

  37. Pearce-Duvet, J. M. C. The origin of human pathogens: evaluating the role of agriculture and domestic animals in the evolution of human disease. Biol. Rev. 81, 369–382 (2006).

    Article  PubMed  Google Scholar 

  38. Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl Acad. Sci. USA 107, 8962–8968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chaplin, G. & Jablonski, N. G. Vitamin D and the evolution of human depigmentation. Am. J. Phys. Anthropol. 139, 451–461 (2009).

    Article  PubMed  Google Scholar 

  40. Brickley, M. B. et al. Ancient vitamin D deficiency: long-term trends. Curr. Anthropol. 58, 420–427 (2017).

    Article  Google Scholar 

  41. Ovesen, L., Brot, C. & Jakobsen, J. Food contents and biological activity of 25-hydroxyvitamin D: a vitamin D metabolite to be reckoned with? Ann. Nutr. Metab. 47, 107–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Bodnar, L. M. et al. Maternal vitamin D deficiency increases the risk of preeclampsia. J. Clin. Endocrinol. Metab. 92, 3517–3522 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, T. J. et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376, 180–188 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lao, O., de Gruijter, J. M., van Duijn, K., Navarro, A. & Kayser, M. Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann. Hum. Genet. 71, 354–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Sturm, R. A. et al. Human pigmentation genes under environmental selection. Genome Biol. 13, 248–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beleza, S. et al. The timing of pigmentation lightening in Europeans. Mol. Biol. Evol. 30, 24–35 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Günther, T. et al. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc. Natl Acad. Sci. USA 112, 11917–11922 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. González-Fortes, G. et al. Paleogenomic evidence for multi-generational mixing between Neolithic farmers and Mesolithic hunter–gatherers in the Lower Danube Basin. Curr. Biol. 27, 1801–1810.e10 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wilde, S. et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc. Natl Acad. Sci. USA 111, 4832–4837 (2014). This study used ancient DNA data for alleles known to be involved in human pigmentation variation to identify a history of positive natural selection and estimate the strength of selection for each locus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jeong, C. et al. Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc. Proc. Natl Acad. Sci. USA 113, 7485–7490 (2016). This is an ancient genome study of eight individuals from Nepal (3,150–1,250 years BP ) that found staggered appearances and frequency increases for several genetic variants known from studies of modern regional populations to be associated with physiological adaptation to high altitude.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lorenzo, F. R. et al. A genetic mechanism for Tibetan high-altitude adaptation. Nat. Genet. 46, 951–956 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peng, Y. et al. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol. Biol. Evol. 28, 1075–1081 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Ralph, P. & Coop, G. Parallel adaptation: one or many waves of advance of an advantageous allele? Genetics 186, 647–668 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Novembre, J., Galvani, A. P. & Slatkin, M. The geographic spread of the CCR5 Δ32 HIV-resistance allele. PLoS Biol. 3, e339 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Richards, M. P., Schulting, R. J. & Hedges, R. E. M. Archaeology: sharp shift in diet at onset of Neolithic. Nature 425, 366–366 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Chaplin, G. & Jablonski, N. G. The human environment and the vitamin D compromise: Scotland as a case study in human biocultural adaptation and disease susceptibility. Hum. Biol. 85, 529–552 (2013).

    Article  PubMed  Google Scholar 

  61. Druzhkova, A. S. et al. Ancient DNA analysis affirms the canid from Altai as a primitive dog. PLoS ONE 8, e57754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Snir, A. et al. The origin of cultivation and proto-weeds, long before Neolithic farming. PLoS ONE 10, e0131422 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Copeland, L., Blazek, J., Salman, H. & Tang, M. C. Form and functionality of starch. Food Hydrocoll. 23, 1527–1534 (2009).

    Article  CAS  Google Scholar 

  65. Gerbault, P. et al. Evolution of lactase persistence: an example of human niche construction. Phil. Trans. R. Soc. B. 366, 863–877 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Campbell, A. K., Waud, J. P. & Matthews, S. B. The molecular basis of lactose intolerance. Sci. Prog. 88, 157–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Tishkoff, S. A. et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 39, 31–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Itan, Y., Powell, A., Beaumont, M. A., Burger, J. & Thomas, M. G. The origins of lactase persistence in Europe. PLoS Comput. Biol. 5, e1000491 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Burger, J., Kirchner, M., Bramanti, B., Haak, W. & Thomas, M. G. Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proc. Natl Acad. Sci. USA 104, 3736–3741 (2007). This was the first ancient DNA-based study of the history of the European lactase persistence allele; this study reported that the allele was not present in eight early Neolithic individuals (!7,500 years BP ) from four geographic sites, suggesting that the ability of individuals to digest lactose across their lifetimes likely post-dated the origin and spread of European dairying practices.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Craig, O. E. et al. Did the first farmers of central and eastern Europe produce dairy foods? Antiquity 79, 882–894 (2005).

    Article  Google Scholar 

  72. Copley, M. S. et al. Direct chemical evidence for widespread dairying in prehistoric Britain. Proc. Natl Acad. Sci. USA 100, 1524–1529 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Treuil, R. Dikili Tash, village préhistorique de Macédoine orientale. 1, Fouilles de Jean Deshayes (1961–1975), vol. 2, Bulletin de Correspondance Hellénique Supplément 37 (Ecole française d'Athènes, 2004).

    Google Scholar 

  74. Salque, M. et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493, 522–525 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39, 1256–1260 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Inchley, C. E. et al. Selective sweep on human amylase genes postdates the split with Neanderthals. Sci. Rep. 6, 37198 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Perry, G. H., Kistler, L., Kelaita, M. A. & Sams, A. J. Insights into hominin phenotypic and dietary evolution from ancient DNA sequence data. J. Hum. Evol. 79, 55–63 (2015).

    Article  PubMed  Google Scholar 

  78. Mathias, R. A. et al. Adaptive evolution of the FADS gene cluster within Africa. PLoS ONE 7, e44926 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paul, B. D. & Snyder, S. H. The unusual amino acid l-ergothioneine is a physiologic cytoprotectant. Cell Death Differ. 17, 1134–1140 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Huff, C. D. et al. Crohn's disease and genetic hitchhiking at IBD5. Mol. Biol. Evol. 29, 101–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Lindo, J. et al. A time transect of exomes from a Native American population before and after European contact. Nat. Commun. 7, 13175 (2016). In this paper, the authors sequenced the exomes of 25 ancient First Nations individuals (!6,200–800 years BP ) from British Columbia, Canada, to identify an HLA-DQA1 gene haplotype with a substantial frequency difference compared with the Tsimshian descendant population living in the region today, potentially reflecting adaptation to disease outbreaks associated with European colonization (which post-dated the ancient DNA time series).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harkins, K. M. & Stone, A. C. Ancient pathogen genomics: insights into timing and adaptation. J. Hum. Evol. 79, 137–149 (2015).

    Article  PubMed  Google Scholar 

  83. Bos, K. I. et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Roffey, S. et al. Investigation of a medieval pilgrim burial excavated from the leprosarium of St Mary Magdalen Winchester. PLoS Negl. Trop. Dis. 11, e0005186 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Spyrou, M. A. et al. Historical Y. pestis genomes reveal the European Black Death as the source of ancient and modern plague pandemics. Cell Host Microbe 19, 874–881 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Marciniak, S. et al. Plasmodium falciparum malaria in 1 st−2nd century CE southern Italy. Curr. Biol. 26, R1220–R1222 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Gelabert, P. et al. Mitochondrial DNA from the eradicated European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain. Proc. Natl Acad. Sci. USA 113, 11495–11500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Duggan, A. T. et al. 17 th century Variola virus reveals the recent history of smallpox. Curr. Biol. 26, 3407–3412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Devault, A. M. et al. Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. N. Engl. J. Med. 370, 334–340 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Devault, A. M. et al. A molecular portrait of maternal sepsis from Byzantine Troy. eLife 6, e20983 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014). This study reported ancient DNA results from dental calculus collected from four European individuals (!1,000–750 years BP ), including documentation of the presence of various pathogenic bacteria and producing direct evidence that pig, sheep, wheat and cruciferous vegetables were consumed as part of the diet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rasmussen, S. et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163, 571–582 (2015). This paper sequenced seven Eurasian plague ( Yersinia pestis ) ancient genomes (!5,000–2,800 years BP ) and, among other findings, discovered that a gene encoding a protein necessary for Y. pestis viability in the flea gut was absent from genomes prior to !3,600 years BP ; the subsequent acquisition of this gene through horizontal transfer likely helped facilitate the bubonic plague transmission cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hinnebusch, B. J. et al. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733–735 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Bos, K. I. et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hummel, S., Schmidt, D., Kremeyer, B., Herrmann, B. & Oppermann, M. Detection of the CCR5-Δ32 HIV resistance gene in Bronze Age skeletons. Genes Immun. 6, 371–374 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Wolpoff, M. H., Thorne, A. G., Smith, F. H., Frayer, D. W. & Pope, G. G. in Origins of Anatomically Modern Humans (eds Nitecki, M. H. & Nitecki, D.) V.) 175–199 (Plenum Press, 1994).

    Book  Google Scholar 

  97. Tattersall, I. Out of Africa: modern human origins special feature: human origins: out of Africa. Proc. Natl Acad. Sci. USA 106, 16018–16021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vernot, B. & Akey, J. M. Resurrecting surviving Neandertal lineages from modern human genomes. Science 343, 1017–1021 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Dannemann, M., Prüfer, K. & Kelso, J. Functional implications of Neandertal introgression in modern humans. Genome Biol. 18, 61–72 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huerta-Sánchez, E. et al. Altitude adaptation in Tibet caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014). This paper demonstrated that a genetic haplotype surrounding the EPAS1 gene that underlies a physiological adaptation to high altitude in modern Tibetans is the result of adaptive introgression from Denisovans or a related archaic hominin population.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Racimo, F. et al. Archaic adaptive introgression in TBX15/WARS2. Mol. Biol. Evol. 34, 509–524 (2017).

    CAS  PubMed  Google Scholar 

  106. Skoglund, P. & Jakobsson, M. Archaic human ancestry in East Asia. Proc. Natl Acad. Sci. USA 108, 18301–18306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Castellano, S. et al. Patterns of coding variation in the complete exomes of three Neandertals. Proc. Natl Acad. Sci. USA 111, 6666–6671 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lalueza-Fox, C. et al. A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 318, 1453–1455 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Lalueza-Fox, C., Gigli, E., de la Rasilla, M., Fortea, J. & Rosas, A. Bitter taste perception in Neanderthals through the analysis of the TAS2R38 gene. Biol. Lett. 5, 809–811 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. McCoy, R. C., Wakefield, J. & Akey, J. M. Impacts of Neanderthal-introgressed sequences on the landscape of human gene expression. Cell 168, 916–927 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Simonti, C. N. et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 351, 737–741 (2016). This study used electronic health record phenotypes from a large sample of modern human patients to associate alleles originally introgressed from Neandertals with increased risk of depression, skin lesions associated with sun exposure (actinic keratosis), and other phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gittelman, R. M. et al. Archaic hominin admixture facilitated adaptation to Out-of-Africa environments. Curr. Biol. 26, 3375–3382 (2016). This paper analysed 126 genomic regions containing strong signatures of adaptive introgression from archaic hominins identified in a sample of geographically diverse human populations; these loci are significantly enriched for genes involved in the immune response and also contain multiple genes with known roles in skin pigmentation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Racimo, F., Sankararaman, S., Nielsen, R. & Huerta-Sánchez, E. Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16, 359–371 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sankararaman, S. et al. The landscape of Neandertal ancestry in present-day humans. Nature 507, 354–357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fumagalli, M. et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science 349, 1343–1347 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Gburcik, V., Cawthorn, W. P., Nedergaard, J., Timmons, J. A. & Cannon, B. An essential role for Tbx15 in the differentiation of brown and 'brite' but not white adipocytes. Am. J. Physiol. Endocrinol. Metab. 303, E1053–E1060 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Deschamps, M. et al. Genomic signatures of selective pressures and introgression from archaic hominins at human innate immunity genes. Am. J. Hum. Genet. 98, 5–21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Enard, D. & Petrov, D. A. RNA viruses drove adaptive introgressions between Neanderthals and modern humans. Preprint at bioRxivhttp://dx.doi.org/10.1101/120477 (2017).

  121. Abi-Rached, L. et al. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334, 89–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sams, A. J. et al. Adaptively introgressed Neandertal haplotype at the OAS locus functionally impacts innate immune responses in humans. Genome Biol. 17, 246–261 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Sullivan, A. P., de Manuel, M., Marques-Bonet, T. & Perry, G. H. An evolutionary medicine perspective on Neandertal extinction. J. Hum. Evol. 108, 62–71 (2017).

    Article  PubMed  Google Scholar 

  124. Houldcroft, C. J. & Underdown, S. J. Neanderthal genomics suggests a pleistocene time frame for the first epidemiologic transition. Am. J. Phys. Anthropol. 160, 379–388 (2016).

    Article  PubMed  Google Scholar 

  125. Key, F. M., Teixeira, J. C., de Filippo, C. & Andrés, A. M. Advantageous diversity maintained by balancing selection in humans. Curr. Opin. Genet. Dev. 29, 45–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Nédélec, Y. et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657–669 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Quach, H. et al. Genetic adaptation and Neandertal admixture shaped the immune system of human populations. Cell 167, 643–656.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Park, S. D. E. et al. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 16, 234–249 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Loog, L. et al. Inferring allele frequency trajectories from ancient DNA indicates that selection on a chicken gene coincided with changes in medieval husbandry practices. Mol. Biol. Evol. http://dx.doi.org/10.1093/molbev/msx142 (2017). This study of domestic chickens connected the ancient DNA-informed timing of a significant change in frequency for an allele associated with increased egg production to concomitant increases in the intensity of chicken husbandry as documented by historical and archaeological records.

  130. MacHugh, D. E., Larson, G. & Orlando, L. Taming the past: ancient DNA and the study of animal domestication. Annu. Rev. Anim. Biosci. 5, 329–351 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Ramos-Madrigal, J. et al. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr. Biol. 26, 3195–3201 (2016). This study identified a mix of ancestral and derived functional genetic variants in maize from Mexico !5,300 years BP , highlighting the gradual temporal process of trait evolution in this domestic species.

    Article  CAS  PubMed  Google Scholar 

  132. Schubert, M. et al. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc. Natl Acad. Sci. USA 111, E5661–E5669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ollivier, M. et al. Amy2B copy number variation reveals starch diet adaptations in ancient European dogs. R. Soc. Open Sci. 3, 160449 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Librado, P. et al. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc. Natl Acad. Sci. USA 112, E6889–E6897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jaenicke-Després, V. et al. Early allelic selection in maize as revealed by ancient DNA. Science 302, 1206–1208 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Flink, L. G. et al. Establishing the validity of domestication genes using DNA from ancient chickens. Proc. Natl Acad. Sci. USA 111, 6184–6189 (2013).

    Article  CAS  Google Scholar 

  137. West, B. & Zhou, B.-X. Did chickens go North? New evidence for domestication. J. Archaeol. Sci. 15, 515–533 (1988).

    Article  Google Scholar 

  138. Librado, P. et al. Ancient genomic changes associated with domestication of the horse. Science 356, 442–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Outram, A. K. et al. The earliest horse harnessing and milking. Science 323, 1332–1335 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Ludwig, A. et al. Coat colour variation at the beginning of horse domestication. Science 324, 485 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ludwig, A. et al. Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses. Phil. Trans. R. Soc. B. 370, 20130386 (2014).

    Article  CAS  Google Scholar 

  142. Ottoni, C. et al. The palaeogenetics of cat dispersal in the ancient world. Nat. Ecol. Evol. 1, 0139 (2017).

    Article  Google Scholar 

  143. Axelsson, E. et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495, 360–364 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Arendt, M., Cairns, K. M., Ballard, J. W. O., Savolainen, P. & Axelsson, E. Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity 117, 301–306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Botigué, L. R. et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 8, 16082 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Frantz, L. A. F. et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Kistler, L., Ware, R., Smith, O., Collins, M. & Allaby, R. G. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 45, 6310–6320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fehren-Schmitz, L. & Georges, L. Ancient DNA reveals selection acting on genes associated with hypoxia response in pre-Columbian Peruvian Highlanders in the last 8500 years. Sci. Rep. 6, 23485 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sullivan, A. P., Bird, D. W. & Perry, G. H. Human behaviour as a long-term ecological driver of non-human evolution. Nat. Ecol. Evol. 1, 0065 (2017).

    Article  Google Scholar 

  150. Noonan, J. P. et al. Sequencing and analysis of Neanderthal genomic DNA. Science 314, 1113–1118 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Green, R. E. et al. Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Ramírez, O. et al. Paleogenomics in a temperate environment: shotgun sequencing from an extinct Mediterranean Caprine. PLoS ONE 4, e5670 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Miller, W. et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456, 387–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Lambert, D. M. & Millar, C. D. Evolutionary biology: ancient genomics is born. Nature 444, 275–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Wall, J. D. & Kim, S. K. Inconsistencies in Neanderthal genomic DNA sequences. PLoS Genet. 3, 1862–1866 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463, 757–762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pinhasi, R. et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS ONE 10, e0129102 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).

    Article  PubMed  CAS  Google Scholar 

  160. Carpenter, M. L. et al. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93, 852–864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hofreiter, M. et al. The future of ancient DNA: technical advances and conceptual shifts. BioEssays 37, 284–293 (2015).

    Article  PubMed  Google Scholar 

  162. Gron, K. J. et al. Cattle management for dairying in Scandinavia's earliest Neolithic. PLoS ONE 10, e0131267 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Zeder, M. A. & Hesse, B. The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 287, 2254–2257 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Cramp, L. J. E. et al. Neolithic dairy farming at the extreme of agriculture in northern Europe. Proc. Biol. Sci. 281, 20140819 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Warinner, C. et al. Direct evidence of milk consumption from ancient human dental calculus. Sci. Rep. 4, 7104 (2015).

    Article  CAS  Google Scholar 

  166. Yang, Y. et al. Proteomics evidence for kefir dairy in Early Bronze Age China. J. Archaeol. Sci. 45, 178–186 (2014).

    Article  CAS  Google Scholar 

  167. Burbano, H. A. et al. Targeted investigation of the Neandertal genome by array-based sequence capture. Science 328, 723–725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 94–98 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Keller, A. et al. New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing. Nat. Commun. 3, 698 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schroeder, H. et al. Genome-wide ancestry of 17 th-century enslaved Africans from the Caribbean. Proc. Natl Acad. Sci. USA 112, 3669–3673 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Malaspinas, A.-S. et al. Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil. Curr. Biol. 24, R1035–R1037 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506, 225–229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Skoglund, P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gallego Llorente, M. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350, 820–822 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Olalde, I. et al. A common genetic origin for early farmers from Mediterranean Cardial and Central European LBK cultures. Mol. Biol. Evol. 32, 3132–3142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349, aab3884 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Sawyer, S. et al. Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proc. Natl Acad. Sci. USA 112, 15696–15700 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rasmussen, M. et al. The ancestry and affiliations of Kennewick Man. Nature 523, 455–458 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Martiniano, R. et al. Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nat. Commun. 7, 10326 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Schiffels, S. et al. Iron Age and Anglo-Saxon genomes from East England reveal British migration history. Nat. Commun. 7, 10408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gallego Llorente, M. et al. The genetics of an early Neolithic pastoralist from the Zagros, Iran. Sci. Rep. 6, 31326 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kılınç, G. M. et al. The demographic development of the first farmers in Anatolia. Curr. Biol. 26, 2659–2666 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Omrak, A. et al. Genomic evidence establishes Anatolia as the source of the European Neolithic gene pool. Curr. Biol. 26, 270–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Skoglund, P. et al. Genomic insights into the peopling of the Southwest Pacific. Nature 538, 510–513 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Jones, E. R. et al. The Neolithic transition in the Baltic was not driven by admixture with early European farmers. Curr. Biol. 27, 576–582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Unterländer, M. et al. Ancestry and demography and descendants of Iron Age nomads of the Eurasian Steppe. Nat. Commun. 8, 14615 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Lipson, M. et al. Parallel ancient genomic transects reveal complex population history of early European farmers. Preprint at bioRxivhttp://dx.doi.org/10.1101/114488 (2017).

  196. Lindo, J. et al. Ancient individuals from the North American Northwest Coast reveal 10,000 years of regional genetic continuity. Proc. Natl Acad. Sci. USA 114, 4093–4098 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Mathieson, I. et al. The genomic history of southeastern Europe. Preprint at bioRxivhttp://dx.doi.org/10.1101/135616 (2017).

  199. Martiniano, R. et al. The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 13, e1006852 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Siska, V. et al. Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago. Sci. Adv. 3, e1601877 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Haber, M. et al. Continuity and admixture in the last five millennia of Levantine history from ancient Canaanite and present-day Lebanese genome sequences. Am. J. Hum. Genet. http://dx.doi.org/10.1016/j.ajhg.2017.06.013 (2017).

  202. Schuenemann, V. J. et al. Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nat. Commun. 8, 15694 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Schlebusch, C. M. et al. Ancient genomes from southern Africa pushes modern human divergence beyond 260,000 years ago. Preprint at bioRxivhttp://dx.doi.org/10.1101/145409 (2017).

  204. Mittnik, A. et al. The genetic history of northern Europe. Preprint at bioRxivhttp://dx.doi.org/10.1101/113241 (2017).

  205. Slon, V. et al. A fourth Denisovan individual. Sci. Adv. 3, e1700186 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Kuhlwilm, M. et al. Ancient gene flow from early modern humans into Eastern Neanderthals. Nature 530, 429–433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank C. Bergey and R. George for discussion about the manuscript. This work was supported by grants from the National Science Foundation (BCS-1554834 and BCS-1317163; to G.H.P.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to George H. Perry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Spatiotemporal frequencies of the European lactase persistence allele. (PDF 186 kb)

PowerPoint slides

Glossary

Adaptation

A process of phenotypic and corresponding genetic change over time for traits that confer increased reproductive fitness in a given environmental context.

Positive natural selection

A mechanism of evolution in which a genetically mediated trait that confers a relative fitness advantage increases in frequency over time because of that advantage. In this Review, we refer to positive selection as an adaptive process that can act on new or previously existing genetic variants.

Phenotype

Physical traits of an organism; often refers to externally visible traits but may include internal and microscopic or biochemical traits.

Ancient DNA

DNA from palaeontological, archaeological, or historical but pre-modern biological specimens that is often damaged and degraded and recovered in small quantities.

Exome

All or nearly all protein-coding gene regions of the nuclear genome; in humans, representing approximately 1% of the genome.

Single-nucleotide polymorphism

(SNP). A single position in the reference genome at which the specific nucleotide present (thymine, guanine, cytosine, or adenine) varies among individuals in a population or species.

Archaic hominins

Now-extinct populations or species that are distinct from anatomically modern humans but that share a more recent common ancestor with modern humans than with chimpanzees — for example, Neandertals and Denisovans.

Anatomically modern humans

Hominins recognizable phenotypically as early members of our own species, Homo sapiens, first appearing >200,000 years BP in Africa.

Adaptive introgression

The process of a genetic variant that was originally introduced into a population via admixture increasing in frequency by positive natural selection because it confers a fitness advantage.

Genetic drift

Changes in genetic variation over time that are due to random (chance) processes, apart from natural selection.

Gene flow

Movement of genetic variation between populations, for example, through migration or admixture.

Neolithic

A cultural period in human prehistory characterized by early technological and demographic shifts associated with the transition to farming and pastoralism, occurring at different times across regions.

Domestication

A process of plant and animal evolution mediated by human selection for particular phenotypes (artificial selection), sometimes combined with commensal adaptation to human-constructed niches.

Biocultural adaptation

The process of interaction between human cultural and adaptive biological change (for example, dairying and the ability of adults to digest milk sugars).

Zoonotic

The ability of a pathogen to be directly or indirectly transmitted to humans from animals sharing the same habitat.

Admixture

Interbreeding between previously isolated populations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marciniak, S., Perry, G. Harnessing ancient genomes to study the history of human adaptation. Nat Rev Genet 18, 659–674 (2017). https://doi.org/10.1038/nrg.2017.65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2017.65

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research