Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain

Abstract

The oxidative phosphorylation electron transport chain (OXPHOS-ETC) of the inner mitochondrial membrane is composed of five large protein complexes, named CI–CV. These complexes convert energy from the food we eat into ATP, a small molecule used to power a multitude of essential reactions throughout the cell. OXPHOS-ETC complexes are organized into supercomplexes (SCs) of defined stoichiometry: CI forms a supercomplex with CIII2 and CIV (SC I+III2+IV, known as the respirasome), as well as with CIII2 alone (SC I+III2). CIII2 forms a supercomplex with CIV (SC III2+IV) and CV forms dimers (CV2). Recent cryo-EM studies have revealed the structures of SC I+III2+IV and SC I+III2. Furthermore, recent work has shed light on the assembly and function of the SCs. Here we review and compare these recent studies and discuss how they have advanced our understanding of mitochondrial electron transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The complexes of the mitochondrial OXPHOS-ETC.
Figure 2: The supercomplexes of the mitochondrial OXPHOS-ETC.
Figure 3: Two possible paths for the assembly of respirasomes.
Figure 4: Interaction sites within the tight respirasome.
Figure 5: The four major pivots of the respirasome.
Figure 6: Asymmetric electron flow through CIII2 may reduce ROS production.

Similar content being viewed by others

Accession codes

Accessions

Electron Microscopy Data Bank

Protein Data Bank

References

  1. Nicholls, D.G. & Ferguson, S.J. Bioenergetics 4 (Academic Press, London, 2013).

  2. Park, R.B. & Biggins, J. Quantasome: size and composition. Science 144, 1009–1011 (1964).

    Article  CAS  PubMed  Google Scholar 

  3. Enríquez, J.A. Supramolecular organization of respiratory complexes. Annu. Rev. Physiol. 78, 533–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Chance, B., Estabrook, R.W. & Lee, C.P. Electron transport in the oxysome. Science 140, 379–380 (1963).

    Article  CAS  PubMed  Google Scholar 

  5. Hatefi, Y., Haavik, A.G. & Griffiths, D.E. Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. J. Biol. Chem. 237, 1676–1680 (1962).

    CAS  PubMed  Google Scholar 

  6. Chazotte, B. & Hackenbrock, C.R. The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport. J. Biol. Chem. 263, 14359–14367 (1988).

    CAS  PubMed  Google Scholar 

  7. Hackenbrock, C.R., Chazotte, B. & Gupte, S.S. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J. Bioenerg. Biomembr. 18, 331–368 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Schägger, H. & Pfeiffer, K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 19, 1777–1783 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schägger, H. & Pfeiffer, K. The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J. Biol. Chem. 276, 37861–37867 (2001).

    PubMed  Google Scholar 

  10. Iwata, S. et al. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc 1 complex. Science 281, 64–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Tsukihara, T. et al. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272, 1136–1144 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Davies, K.M. et al. Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl. Acad. Sci. USA 108, 14121–14126 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Allegretti, M. et al. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 521, 237–240 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Hahn, A. et al. Structure of a complete atp synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Mol. Cell 63, 445–456 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Greggio, C. et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 25, 301–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Barrientos, A. & Ugalde, C. I function, therefore I am: overcoming skepticism about mitochondrial supercomplexes. Cell Metab. 18, 147–149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Acín-Pérez, R., Fernández-Silva, P., Peleato, M.L., Pérez-Martos, A. & Enríquez, J.A. Respiratory active mitochondrial supercomplexes. Mol. Cell 32, 529–539 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Shinzawa-Itoh, K. et al. Purification of active respiratory supercomplex from bovine heart mitochondria enables functional studies. J. Biol. Chem. 291, 4178–4184 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Acín-Pérez, R. et al. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol. Cell 13, 805–815 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moreno-Lastres, D. et al. Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab. 15, 324–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Diaz, F., Fukui, H., Garcia, S. & Moraes, C.T. Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol. Cell. Biol. 26, 4872–4881 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Diaz, F., Enríquez, J.A. & Moraes, C.T. Cells lacking Rieske iron-sulfur protein have a reactive oxygen species-associated decrease in respiratory complexes I and IV. Mol. Cell. Biol. 32, 415–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maranzana, E., Barbero, G., Falasca, A.I., Lenaz, G. & Genova, M.L. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid. Redox Signal. 19, 1469–1480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lopez-Fabuel, I. et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc. Natl. Acad. Sci. USA 113, 13063–13068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blaza, J.N., Serreli, R., Jones, A.J.Y., Mohammed, K. & Hirst, J. Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc. Natl. Acad. Sci. USA 111, 15735–15740 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lenaz, G., Tioli, G., Falasca, A.I. & Genova, M.L. Complex I function in mitochondrial supercomplexes. Biochim. Biophys. Acta 1857, 991–1000 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Bianchi, C., Genova, M.L., Parenti Castelli, G. & Lenaz, G. The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J. Biol. Chem. 279, 36562–36569 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, Y.-C. et al. Identification of a protein mediating respiratory supercomplex stability. Cell Metab. 15, 348–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ikeda, K., Shiba, S., Horie-Inoue, K., Shimokata, K. & Inoue, S. A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat. Commun. 4, 2147 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Mourier, A., Matic, S., Ruzzenente, B., Larsson, N.-G. & Milenkovic, D. The respiratory chain supercomplex organization is independent of COX7a2l isoforms. Cell Metab. 20, 1069–1075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cogliati, S. et al. Mechanism of super-assembly of respiratory complexes III and IV. Nature 539, 579–582 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Pérez-Pérez, R. et al. COX7A2L is a mitochondrial complex III binding protein that stabilizes the III2+IV supercomplex without affecting respirasome formation. Cell Rep. 16, 2387–2398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Letts, J.A., Fiedorczuk, K. & Sazanov, L.A. The architecture of respiratory supercomplexes. Nature 537, 644–648 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Gu, J. et al. The architecture of the mammalian respirasome. Nature 537, 639–643 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Sousa, J.S., Mills, D.J., Vonck, J. & Kühlbrandt, W. Functional asymmetry and electron flow in the bovine respirasome. eLife 5, e21290 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, M., Gu, J., Guo, R., Huang, Y. & Yang, M. Structure of mammalian respiratory supercomplex I1III2IV1 . Cell 167, 1598–1609 e10 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Althoff, T., Mills, D.J., Popot, J.L. & Kühlbrandt, W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1 . EMBO J. 30, 4652–4664 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dudkina, N.V., Kudryashev, M., Stahlberg, H. & Boekema, E.J. Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc. Natl. Acad. Sci. USA 108, 15196–15200 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fiedorczuk, K. et al. Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406–410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu, J., Vinothkumar, K.R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao, X. et al. Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. Biochemistry 42, 9067–9080 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Yano, N. et al. The Mg2+-containing water cluster of mammalian cytochrome c oxidase collects four pumping proton equivalents in each catalytic cycle. J. Biol. Chem. 291, 23882–23894 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sarewicz, M. & Osyczka, A. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol. Rev. 95, 219–243 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Darrouzet, E., Cooley, J.W. & Daldal, F. The cytochrome bc (1) complex and its homologue the b (6) f complex: similarities and differences. Photosynth. Res. 79, 25–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Mitchell, P. The protonmotive Q cycle: a general formulation. FEBS Lett. 59, 137–139 (1975).

    Article  CAS  PubMed  Google Scholar 

  47. Milenkovic, D., Blaza, J.N., Larsson, N.-G. & Hirst, J. The enigma of the respiratory chain supercomplex. Cell Metab. 25, 765–776 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Stroud, D.A. et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Guerrero-Castillo, S. et al. The assembly pathway of mitochondrial respiratory chain complex i. Cell Metab. 25, 128–139 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Calvaruso, M.A. et al. Mitochondrial complex III stabilizes complex I in the absence of NDUFS4 to provide partial activity. Hum. Mol. Genet. 21, 115–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Davoudi, M., Kotarsky, H., Hansson, E., Kallijärvi, J. & Fellman, V. COX7A2L/SCAFI and pre-complex III modify respiratory chain supercomplex formation in different mouse strains with a Bcs1l mutation. PLoS One 11, e0168774 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sterky, F.H. et al. Altered dopamine metabolism and increased vulnerability to MPTP in mice with partial deficiency of mitochondrial complex I in dopamine neurons. Hum. Mol. Genet. 21, 1078–1089 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Milenkovic, D. et al. TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum. Mol. Genet. 22, 1983–1993 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hatle, K.M. et al. MCJ/DnaJC15, an endogenous mitochondrial repressor of the respiratory chain that controls metabolic alterations. Mol. Cell. Biol. 33, 2302–2314 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Williams, E.G. et al. Systems proteomics of liver mitochondria function. Science 352, aad0189 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Jha, P., Wang, X. & Auwerx, J. Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE). Curr. Protoc. Mouse Biol. 6, 1–14 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. Yanamura, W., Zhang, Y.Z., Takamiya, S. & Capaldi, R.A. Tissue-specific differences between heart and liver cytochrome c oxidase. Biochemistry 27, 4909–4914 (1988).

    Article  PubMed  Google Scholar 

  58. Van Kuilenburg, A.B., Van Beeumen, J.J. & Muijsers, A.O. Subunits VIIa, b,c of human cytochrome c oxidase. Eur. J. Biochem. 203, 193–199 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Hüttemann, M., Kadenbach, B. & Grossman, L.I. Mammalian subunit IV isoforms of cytochrome c oxidase. Gene 267, 111–123 (2001).

    Article  PubMed  Google Scholar 

  60. Hüttemann, M. et al. Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion 12, 294–304 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Sun, F. et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 1043–1057 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Stroh, A. et al. Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. J. Biol. Chem. 279, 5000–5007 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Yip, C.-Y., Harbour, M.E., Jayawardena, K., Fearnley, I.M. & Sazanov, L.A. Evolution of respiratory complex I: “supernumerary” subunits are present in the alpha-proteobacterial enzyme. J. Biol. Chem. 286, 5023–5033 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Schägger, H. Respiratory chain supercomplexes of mitochondria and bacteria. Biochim. Biophys. Acta 1555, 154–159 (2002).

    Article  PubMed  Google Scholar 

  65. Andrews, B., Carroll, J., Ding, S., Fearnley, I.M. & Walker, J.E. Assembly factors for the membrane arm of human complex I. Proc. Natl. Acad. Sci. USA 110, 18934–18939 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mileykovskaya, E. & Dowhan, W. Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem. Phys. Lipids 179, 42–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Scheres, S.H.W. Processing of structurally heterogeneous Cryo-EM data in RELION. Methods Enzymol. 579, 125–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Kotlyar, A.B. & Vinogradov, A.D. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim. Biophys. Acta 1019, 151–158 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Vinogradov, A.D. Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim. Biophys. Acta 1364, 169–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Babot, M. et al. ND3, ND1 and 39kDa subunits are more exposed in the de-active form of bovine mitochondrial complex I. Biochim. Biophys. Acta 1837, 929–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zickermann, V. et al. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347, 44–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Sazanov, L.A. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat. Rev. Mol. Cell Biol. 16, 375–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Guarás, A. et al. The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency. Cell Rep. 15, 197–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Ge, J. et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527, 64–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Muller, F.L., Liu, Y. & Van Remmen, H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279, 49064–49073 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Kussmaul, L. & Hirst, J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. USA 103, 7607–7612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Pryde, K.R. & Hirst, J. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J. Biol. Chem. 286, 18056–18065 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Letts, J.A., Degliesposti, G., Fiedorczuk, K., Skehel, M. & Sazanov, L.A. Purification of ovine respiratory complex i results in a highly active and stable preparation. J. Biol. Chem. 291, 24657–24675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Forman, H.J. & Azzi, A. On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J. 11, 374–375 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Forman, H.J. & Kennedy, J.A. Role of superoxide radical in mitochondrial dehydrogenase reactions. Biochem. Biophys. Res. Commun. 60, 1044–1050 (1974).

    Article  CAS  PubMed  Google Scholar 

  82. Boveris, A. & Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707–716 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Swierczek, M. et al. An electronic bus bar lies in the core of cytochrome bc1. Science 329, 451–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Crofts, A.R. et al. The Q-cycle reviewed: how well does a monomeric mechanism of the bc1 complex account for the function of a dimeric complex? Biochim. Biophys. Acta 1777, 1001–1019 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mitchell, P. Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett. 56, 1–6 (1975).

    Article  CAS  PubMed  Google Scholar 

  86. Osyczka, A., Moser, C.C. & Dutton, P.L. Fixing the Q cycle. Trends Biochem. Sci. 30, 176–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. de Vries, S., Albracht, S.P., Berden, J.A. & Slater, E.C. A new species of bound ubisemiquinone anion in QH2: cytochrome c oxidoreductase. J. Biol. Chem. 256, 11996–11998 (1981).

    CAS  PubMed  Google Scholar 

  88. Quinlan, C.L., Gerencser, A.A., Treberg, J.R. & Brand, M.D. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J. Biol. Chem. 286, 31361–31372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ohnishi, T. & Trumpower, B.L. Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate. cytochrome c reductase complex. J. Biol. Chem. 255, 3278–3284 (1980).

    CAS  PubMed  Google Scholar 

  90. Dikanov, S.A. et al. Hydrogen bonds between nitrogen donors and the semiquinone in the Qi-site of the bc 1 complex. J. Biol. Chem. 282, 25831–25841 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Yu, C.A., Nagaoka, S., Yu, L. & King, T.E. Evidence for the existence of a ubiquinone protein and its radical in the cytochromes b and c1 region in the mitochondrial electron transport chain. Biochem. Biophys. Res. Commun. 82, 1070–1078 (1978).

    Article  CAS  PubMed  Google Scholar 

  92. Yu, C.A., Nagoaka, S., Yu, L. & King, T.E. Evidence of ubisemiquinone radicals in electron transfer at the cytochromes b and c 1 region of the cardiac respiratory chain. Arch. Biochem. Biophys. 204, 59–70 (1980).

    Article  CAS  PubMed  Google Scholar 

  93. de Vries, S., Berden, J.A. & Slater, E.C. Properties of a semiquinone anion located in the QH2:cytochrome c oxidoreductase segment of the mitochondrial respiratory chain. FEBS Lett. 122, 143–148 (1980).

    Article  CAS  PubMed  Google Scholar 

  94. Raha, S., McEachern, G.E., Myint, A.T. & Robinson, B.H. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radic. Biol. Med. 29, 170–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Xia, D. et al. Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. Biochim. Biophys. Acta. 1827, 1278–1294 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Genova, M.L. & Lenaz, G. Functional role of mitochondrial respiratory supercomplexes. Biochim. Biophys. Acta. 1837, 427–443 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Gupte, S. et al. Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components. Proc. Natl. Acad. Sci. USA 81, 2606–2610 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kröger, A. & Klingenberg, M. The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur. J. Biochem. 34, 358–368 (1973).

    Article  PubMed  Google Scholar 

  99. Kröger, A. & Klingenberg, M. Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur. J. Biochem. 39, 313–323 (1973).

    Article  PubMed  Google Scholar 

  100. Cruciat, C.M., Brunner, S., Baumann, F., Neupert, W. & Stuart, R.A. The cytochrome bc1 and cytochrome c oxidase complexes associate to form a single supracomplex in yeast mitochondria. J. Biol. Chem. 275, 18093–18098 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Mileykovskaya, E. et al. Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy. J. Biol. Chem. 287, 23095–23103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Trouillard, M., Meunier, B. & Rappaport, F. Questioning the functional relevance of mitochondrial supercomplexes by time-resolved analysis of the respiratory chain. Proc. Natl. Acad. Sci. USA 108, E1027–E1034 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Schneider, H., Lemasters, J.J., Höchli, M. & Hackenbrock, C.R. Fusion of liposomes with mitochondrial inner membranes. Proc. Natl. Acad. Sci. USA 77, 442–446 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schneider, H., Lemasters, J.J., Höchli, M. & Hackenbrock, C.R. Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components. J. Biol. Chem. 255, 3748–3756 (1980).

    CAS  PubMed  Google Scholar 

  105. Strogolova, V., Furness, A., Robb-McGrath, M., Garlich, J. & Stuart, R.A. Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Mol. Cell. Biol. 32, 1363–1373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vukotic, M. et al. Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. Cell Metab. 15, 336–347 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Zhou, A. et al. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. eLife 4, e10180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by European Union's 2020 Research and Innovation Program under grant 701309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid A Sazanov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letts, J., Sazanov, L. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol 24, 800–808 (2017). https://doi.org/10.1038/nsmb.3460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing