Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Class 2 CRISPR–Cas RNA-guided endonucleases: Swiss Army knives of genome editing

Abstract

CRISPR–Cas is a bacterial defense system against phage infection and nucleic acid invasion. Class 2 type II CRISPR–Cas9 has also been widely used for genome engineering. Here, we review novel insights into the CRISPR class 2 type V enzymes, specifically Cpf1 and C2c1, which display different DNA-recognition and cleavage characteristics than those of Cas9, the best-characterized member of class 2. Recent structures of these ribonucleoprotein complexes that capture several stages of the endonuclease reaction have provided molecular details of recognition, unzipping and cleavage of the target DNA, allowing their comparison with Cas9. A detailed understanding of these mechanisms is crucial for improving these genome engineering tools and expanding the genomic space that can be targeted.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the structural organization of class 2 members of the CRISPR–Cas system.
Figure 2: PAM-dependent target-DNA recognition.
Figure 3: Conformational rearrangements upon target-DNA recognition by class 2 members of CRISPR–Cas.
Figure 4: Detailed view of the conformational changes of the REC lobe and septum upon R-loop formation.
Figure 5: Catalytic insights of the class 2 ternary complexes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987). First report of CRISPR array in bacteria.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mojica, F.J., Juez, G. & Rodríguez-Valera, F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol. Microbiol. 9, 613–621 (1993).

    CAS  PubMed  Google Scholar 

  3. Hermans, P.W. et al. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect. Immun. 59, 2695–2705 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jansen, R., Embden, J.D., Gaastra, W. & Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002).

    CAS  PubMed  Google Scholar 

  5. Lillestøl, R.K., Redder, P., Garrett, R.A. & Brügger, K. A putative viral defence mechanism in archaeal cells. Archaea 2, 59–72 (2006).

    PubMed  PubMed Central  Google Scholar 

  6. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  PubMed  Google Scholar 

  7. Brouns, S.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mojica, F.J., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).

    CAS  PubMed  Google Scholar 

  9. Liu, L. et al. C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol. Cell 65, 310–322 (2017). Crystal structure of AacC21 in complex with sgRNA and first biochemical analysis of single-nucleotide mismatches between guide RNA and DNA target.

    CAS  PubMed  Google Scholar 

  10. Yang, H., Gao, P., Rajashankar, K.R. & Patel, D.J. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167, 1814–1828.e12 (2016). Crystal structures of the AacC2c1 ternary complex reveal the catalytic mechanism of double-strand-break formation in C2c1.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong, D. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522–526 (2016). First structure of Cpf1 in complex with crRNA and EM projections of the apo form of Cpf1.

    CAS  PubMed  Google Scholar 

  12. Gao, P., Yang, H., Rajashankar, K.R., Huang, Z. & Patel, D.J. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 26, 901–913 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stella, S., Alcon, P. & Montoya, G. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 10.1038/nature22398 (2017). First structure of the R loop of Cpf1 after cleavage revealing the different paths taken by the two DNA strands toward the catalytic center.

  14. Swarts, D.C., van der Oost, J. & Jinek, M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 66, 221–233.e4 (2017). Structure of Cpf1 bound to the crRNA and artificial R loop, mimicking the pre-cleavage state.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).First structure of Cpf1 in complex with a DNA target containing the PAM sequence.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang, F. & Doudna, J.A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    CAS  PubMed  Google Scholar 

  17. Nishimasu, H. & Nureki, O. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr. Opin. Struct. Biol. 43, 68–78 (2017).

    CAS  PubMed  Google Scholar 

  18. Jackson, R.N., van Erp, P.B., Sternberg, S.H. & Wiedenheft, B. Conformational regulation of CRISPR-associated nucleases. Curr. Opin. Microbiol. 37, 110–119 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Makarova, K.S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Makarova, K.S. et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9, 467–477 (2011).

    CAS  PubMed  Google Scholar 

  21. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579–E2586 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015). Characterization of Cpf1 and its use in human cell target editing.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kleinstiver, B.P. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34, 869–874 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863–868 (2016).

    CAS  PubMed  Google Scholar 

  29. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385–397 (2015). Identification and characterization of C2c1.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Smargon, A. A. et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 65, 618–630.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gootenberg, J.S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Barrangou, R. & van Pijkeren, J.P. Exploiting CRISPR-Cas immune systems for genome editing in bacteria. Curr. Opin. Biotechnol. 37, 61–68 (2016).

    CAS  PubMed  Google Scholar 

  33. Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Carroll, D. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 83, 409–439 (2014).

    CAS  PubMed  Google Scholar 

  35. Carroll, D. Genome editing: progress and challenges for medical applications. Genome Med. 8, 120 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Abudayyeh, O.O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Anantharaman, V., Makarova, K.S., Burroughs, A.M., Koonin, E.V. & Aravind, L. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol. Direct 8, 15 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shmakov, S. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, L. et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170, 714–726.e10 (2017).

    CAS  PubMed  Google Scholar 

  41. Liu, L. et al. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168, 121–134.e12 (2017).

    CAS  PubMed  Google Scholar 

  42. Knott, J.K. et al. Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme. Nat. Struct. Mol. Biol. http://dx.doi.org/10.1038/nsmb.3466 (2017).

  43. Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517–521 (2016). Identification and characterization of the RNase activity in Cpf1 showing that it is able to process pre-crRNA into mature crRNA.

    CAS  PubMed  Google Scholar 

  44. Tang, X. et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 3, 17103 (2017).

    PubMed  Google Scholar 

  45. Kim, S.K. et al. Efficient transcriptional gene repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens. ACS Synth. Biol. 6, 1273–1282 (2017).

    CAS  PubMed  Google Scholar 

  46. Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. Nat. Biotechnol. 35, 789–792 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zaidi, S.S., Mahfouz, M.M. & Mansoor, S. CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci. 22, 550–553 (2017).

    CAS  PubMed  Google Scholar 

  48. Jiang, Y. et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat. Commun. 8, 15179 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Hur, J.K. et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat. Biotechnol. 34, 807–808 (2016).

    CAS  PubMed  Google Scholar 

  50. Wang, M., Mao, Y., Lu, Y., Tao, X. & Zhu, J.K. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol. Plant 10, 1011–1013 (2017).

    CAS  PubMed  Google Scholar 

  51. Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

    CAS  PubMed  Google Scholar 

  52. Zhang, Y. et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci. Adv. 3, e1602814 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Jiang, F., Zhou, K., Ma, L., Gressel, S. & Doudna, J.A.A. STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348, 1477–1481 (2015). Crystal structure of Cas9 binary complex.

    CAS  PubMed  Google Scholar 

  55. Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867–871 (2016). Crystal structure of the Cas9 R loop before cleavage and cryo-EM structure of Cas9 in complex with a long DNA target revealing the position of the catalytic domains RuvC and HNH and the enter and exit point of the DNA in Cas9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Künne, T., Swarts, D.C. & Brouns, S.J. Planting the seed: target recognition of short guide RNAs. Trends Microbiol. 22, 74–83 (2014).

    PubMed  Google Scholar 

  57. Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C. & Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nishimasu, H. et al. Structural basis for the altered PAM recognition by engineered CRISPR-Cpf1. Mol. Cell 67, 139–147 e2 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Stella, S., Cascio, D. & Johnson, R.C. The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes Dev. 24, 814–826 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rohs, R. et al. The role of DNA shape in protein-DNA recognition. Nature 461, 1248–1253 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wiedenheft, B. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl. Acad. Sci. USA 108, 10092–10097 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. USA 108, 10098–10103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tsai, S.Q. & Joung, J.K. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat. Rev. Genet. 17, 300–312 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsai, S.Q. et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat. Methods 14, 607–614 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Stella, S. & Montoya, G. The genome editing revolution: a CRISPR-Cas TALE off-target story. BioEssays 38 (Suppl 1), S4–S13 (2016).

    CAS  PubMed  Google Scholar 

  68. Thomas, M., White, R.L. & Davis, R.W. Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc. Natl. Acad. Sci. USA 73, 2294–2298 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Alcón, P., Montoya, G. & Stella, S. Assembly of Francisella novicida Cpf1 endonuclease in complex with guide RNA and target DNA. Acta Crystallogr. F Struct. Biol. Commun. 73, 409–415 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Sternberg, S.H., LaFrance, B., Kaplan, M. & Doudna, J.A. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527, 110–113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Palermo, G., Miao, Y., Walker, R.C., Jinek, M. & McCammon, J.A. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations. Proc. Natl. Acad. Sci. USA 114, 7260–7265 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Molina, R. et al. Visualizing phosphodiester-bond hydrolysis by an endonuclease. Nat. Struct. Mol. Biol. 22, 65–72 (2015).

    CAS  PubMed  Google Scholar 

  74. Kleinstiver, B.P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kleinstiver, B.P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Komor, A.C., Badran, A.H. & Liu, D.R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20–36 (2017).

    CAS  PubMed  Google Scholar 

  77. Slaymaker, I.M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    CAS  PubMed  Google Scholar 

  78. Amitai, G. & Sorek, R. CRISPR-Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14, 67–76 (2016).

    CAS  PubMed  Google Scholar 

  79. Wright, A.V., Nuñez, J.K. & Doudna, J.A. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164, 29–44 (2016).

    CAS  PubMed  Google Scholar 

  80. van der Oost, J., Westra, E.R., Jackson, R.N. & Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12, 479–492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yosef, I., Goren, M.G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569–5576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nuñez, J.K. et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21, 528–534 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Nuñez, J.K., Harrington, L.B., Kranzusch, P.J., Engelman, A.N. & Doudna, J.A. Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527, 535–538 (2015).First crystal structure of Cas1–Cas2 in complex with a DNA protospacer.

    PubMed  PubMed Central  Google Scholar 

  84. Jackson, S.A. et al. CRISPR-Cas: adapting to change. Science 356, eaal5056 (2017).

    PubMed  Google Scholar 

  85. Mojica, F.J., Díez-Villaseñor, C., García-Martínez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

    CAS  PubMed  Google Scholar 

  86. Charpentier, E., Richter, H., van der Oost, J. & White, M.F. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol. Rev. 39, 428–441 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Richter, H. et al. Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Res. 40, 9887–9896 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamano, T. et al. Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Mol. Cell 67, 633–645.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, Y. et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50, 488–503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Novo Nordisk Foundation Center for Protein Research is financially supported by the Novo Nordisk Foundation (Grant NNF14CC0001). This work was also supported by a grant from the Danish Cancer Society to G.M. We thank the Swiss Light Source (PSI, Switzerland) and the Computerome, the Danish National Computer for Life Sciences, for supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefano Stella or Guillermo Montoya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stella, S., Alcón, P. & Montoya, G. Class 2 CRISPR–Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nat Struct Mol Biol 24, 882–892 (2017). https://doi.org/10.1038/nsmb.3486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing