Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Catching DNA with hoops—biophysical approaches to clarify the mechanism of SMC proteins

Abstract

Structural maintenance of chromosome (SMC) complexes are central regulators of chromosome architecture that are essential in all domains of life. For decades, the structural biology field has been debating how these conserved protein complexes use their intricate ring-like structures to structurally organize DNA. Here, we review the contributions of single-molecule biophysical approaches to resolving the molecular mechanism of SMC protein function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of SMC complexes.
Figure 2: Mechanisms of SMC-complex function.
Figure 3: Experimental setups of single-molecule approaches.
Figure 4: SMC complex configurations.
Figure 5: SMC-mediated DNA compaction visualized by magnetic tweezers.
Figure 6: SMC motion on flow-stretched DNA.

Similar content being viewed by others

References

  1. Uhlmann, F. SMC complexes: from DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 17, 399–412 (2016).Excellent recent review of the current understanding of the mechanism of SMC complexes.

    Article  CAS  PubMed  Google Scholar 

  2. Nasmyth, K. & Haering, C.H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Hirano, T. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev. 26, 1659–1678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haering, C.H. & Gruber, S. SnapShot: SMC protein complexes part I. Cell 164, 326–326.e1 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Nolivos, S. & Sherratt, D. The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol. Rev. 38, 380–392 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Britton, R.A., Lin, D.C. & Grossman, A.D. Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev. 12, 1254–1259 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Q., Mordukhova, E.A., Edwards, A.L. & Rybenkov, V.V. Chromosome condensation in the absence of the non-SMC subunits of MukBEF. J. Bacteriol. 188, 4431–4441 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gruber, S. et al. Interlinked sister chromosomes arise in the absence of condensin during fast replication in B. subtilis. Curr. Biol. 24, 293–298 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Danilova, O., Reyes-Lamothe, R., Pinskaya, M., Sherratt, D. & Possoz, C. MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol. Microbiol. 65, 1485–1492 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Waizenegger, I.C., Hauf, S., Meinke, A. & Peters, J.M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Merkenschlager, M. & Nora, E.P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genomics Hum. Genet. 17, 17–43 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Ono, T. et al. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Frosi, Y. & Haering, C.H. Control of chromosome interactions by condensin complexes. Curr. Opin. Cell Biol. 34, 94–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Meyer, B.J. Targeting X chromosomes for repression. Curr. Opin. Genet. Dev. 20, 179–189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lehmann, A.R. et al. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell. Biol. 15, 7067–7080 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Piccoli, G. et al. Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat. Cell Biol. 8, 1032–1034 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lindroos, H.B. et al. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell 22, 755–767 (2006).

    Article  CAS  Google Scholar 

  19. Jeppsson, K. et al. The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLoS Genet. 10, e1004680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haering, C.H., Farcas, A.-M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Cuylen, S., Metz, J. & Haering, C.H. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18, 894–901 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Kanno, T., Berta, D.G. & Sjögren, C. The Smc5/6 complex is an ATP-dependent intermolecular DNA linker. Cell Rep. 12, 1471–1482 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Wilhelm, L. et al. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLife 4, 11202–11212 (2015).

    Article  CAS  Google Scholar 

  25. Cuylen, S., Metz, J., Hruby, A. & Haering, C.H. Entrapment of chromosomes by condensin rings prevents their breakage during cytokinesis. Dev. Cell 27, 469–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Thadani, R., Uhlmann, F. & Heeger, S. Condensin, chromatin crossbarring and chromosome condensation. Curr. Biol. 22, R1012–R1021 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Cheng, T.M.K. et al. A simple biophysical model emulates budding yeast chromosome condensation. eLife 4, e05565 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Alipour, E. & Marko, J.F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202–11212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dolgin, E. DNA's secret weapon against knots and tangles. Nature 544, 284–286 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, X., Brandão, H.B., Le, T.B.K., Laub, M.T. & Rudner, D.Z. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 355, 524–527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sanborn, A.L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goloborodko, A., Marko, J.F. & Mirny, L.A. Chromosome compaction by active loop extrusion. Biophys. J. 110, 2162–2168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goloborodko, A., Imakaev, M.V., Marko, J.F. & Mirny, L. Compaction and segregation of sister chromatids via active loop extrusion. eLife 5, e14864 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Diebold-Durand, M.-L. et al. Structure of full-length SMC and rearrangements required for chromosome organization. Mol. Cell 67, 334–347.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimura, K. & Hirano, T. ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90, 625–634 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Kimura, K., Rybenkov, V.V., Crisona, N.J., Hirano, T. & Cozzarelli, N.R. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98, 239–248 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Bazett-Jones, D.P., Kimura, K. & Hirano, T. Efficient supercoiling of DNA by a single condensin complex as revealed by electron spectroscopic imaging. Mol. Cell 9, 1183–1190 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, H. & Loparo, J.J. Multistep assembly of DNA condensation clusters by SMC. Nat. Commun. 7, 10200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ha, T. Single-molecule methods leap ahead. Nat. Methods 11, 1015–1018 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Murayama, Y. & Uhlmann, F. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505, 367–371 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat. Cell Biol. 2, 492–499 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Ganji, M., Kim, S.H., van der Torre, J., Abbondanzieri, E. & Dekker, C. Intercalation-based single-molecule fluorescence assay to study DNA supercoil dynamics. Nano Lett. 16, 4699–4707 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Greene, E.C., Wind, S., Fazio, T., Gorman, J. & Visnapuu, M.L. DNA curtains for high-throughput single-molecule optical imaging. Methods Enzymol. 472, 293–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Juette, M.F. et al. The bright future of single-molecule fluorescence imaging. Curr. Opin. Chem. Biol. 20, 103–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Gligoris, T. & Löwe, J. Structural insights into ring formation of cohesin and related Smc complexes. Trends Cell Biol. 26, 680–693 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bai, X.C., McMullan, G. & Scheres, S.H. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Ando, T. et al. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. USA 98, 12468–12472 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katan, A.J. & Dekker, C. High-speed AFM reveals the dynamics of single biomolecules at the nanometer scale. Cell 147, 979–982 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Niki, H. et al. E.coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J. 11, 5101–5109 (1992).The first electron micrographs of SMC proteins (MukB) showing the globular ATPase domains and coiled coils.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Melby, T.E., Ciampaglio, C.N., Briscoe, G. & Erickson, H.P. The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J. Cell Biol. 142, 1595–1604 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matoba, K., Yamazoe, M., Mayanagi, K., Morikawa, K. & Hiraga, S. Comparison of MukB homodimer versus MukBEF complex molecular architectures by electron microscopy reveals a higher-order multimerization. Biochem. Biophys. Res. Commun. 333, 694–702 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Soh, Y.M. et al. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol. Cell 57, 290–303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mascarenhas, J. et al. Dynamic assembly, localization and proteolysis of the Bacillus subtilis SMC complex. BMC Cell Biol. 6, 28 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hirano, M., Anderson, D.E., Erickson, H.P. & Hirano, T. Bimodal activation of SMC ATPase by intra- and inter-molecular interactions. EMBO J. 20, 3238–3250 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fuentes-Perez, M.E., Gwynn, E.J., Dillingham, M.S. & Moreno-Herrero, F. Using DNA as a fiducial marker to study SMC complex interactions with the atomic force microscope. Biophys. J. 102, 839–848 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kamada, K., Miyata, M. & Hirano, T. Molecular basis of SMC ATPase activation: role of internal structural changes of the regulatory subcomplex ScpAB. Structure 21, 581–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Kamada, K., Su'etsugu, M., Takada, H., Miyata, M. & Hirano, T. Overall shapes of the SMC-ScpAB complex are determined by balance between constraint and relaxation of its structural parts. Structure 25, 603–616 e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Bahng, S., Hayama, R. & Marians, K.J. MukB-mediated catenation of DNA is ATP and MukEF independent. J. Biol. Chem. 291, 23999–24008 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Badrinarayanan, A., Reyes-Lamothe, R., Uphoff, S., Leake, M.C. & Sherratt, D. J. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338, 528–531(2012).

  62. Anderson, D.E., Losada, A., Erickson, H.P. & Hirano, T. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156, 419–424 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haering, C.H., Löwe, J., Hochwagen, A. & Nasmyth, K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773–788 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Elbatsh, A.M.O. et al. Cohesin releases DNA through asymmetric ATPase-driven ring opening. Mol. Cell 61, 575–588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huis in 't Veld, P.J. et al. Characterization of a DNA exit gate in the human cohesin ring. Science 346, 968–972 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Kulemzina, I. et al. A reversible association between Smc coiled coils is regulated by lysine acetylation and is required for cohesin association with the DNA. Mol. Cell 63, 1044–1054 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Sun, M., Nishino, T. & Marko, J.F. The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. Nucleic Acids Res. 41, 6149–6160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bazett-Jones, D.P. & Hendzel, M.J. Electron spectroscopic imaging of chromatin. Methods 17, 188–200 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Eeftens, J.M. et al. Condensin Smc2-Smc4 dimers are flexible and dynamic. Cell Rep. 14, 1813–1818 (2016).High-speed AFM study showing that condensin dimers dynamically adopt different conformations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gruber, S. et al. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127, 523–537 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Nasmyth, K. Cohesin: a catenase with separate entry and exit gates? Nat. Cell Biol. 13, 1170–1177 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. De Vlaminck, I. & Dekker, C. Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41, 453–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Strick, T.R., Kawaguchi, T. & Hirano, T. Real-time detection of single-molecule DNA compaction by condensin I. Curr. Biol. 14, 874–880 (2004.)Pioneering magnetic-tweezers study showing that condensin can compact DNA.

    Article  CAS  PubMed  Google Scholar 

  74. Eeftens, J.M., Bisht, S., Kerssemakers, J., Haering, C. & Dekker, C. Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism. bioRxiv http://www.doi.org/10.1101/149138 (2017).

  75. Cui, Y., Petrushenko, Z.M. & Rybenkov, V.V. MukB acts as a macromolecular clamp in DNA condensation. Nat. Struct. Mol. Biol. 15, 411–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Petrushenko, Z.M., Cui, Y., She, W. & Rybenkov, V.V. Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo. EMBO J. 29, 1126–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pyle, A.M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 37, 317–336 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Singleton, M.R., Dillingham, M.S. & Wigley, D.B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Yang, W. Lessons learned from UvrD helicase: mechanism for directional movement. Annu. Rev. Biophys. 39, 367–385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Seidel, R., Bloom, J.G., Dekker, C. & Szczelkun, M.D. Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I. EMBO J. 27, 1388–1398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stigler, J., Çamdere, G.Ö., Koshland, D.E. & Greene, E.C. Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin. Cell Rep. 15, 988–998 (2016).One of three studies demonstrating diffusion of cohesin on stretched DNA and their ability to move across roadblocks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Davidson, I.F. et al. Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J. 35, 2671–2685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ladurner, R. et al. Cohesin's ATPase activity couples cohesin loading onto DNA with Smc3 acetylation. Curr. Biol. 24, 2228–2237 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Murayama, Y. & Uhlmann, F. Chromosome segregation: how to open cohesin without cutting the ring? EMBO J. 32, 614–616 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kanke, M., Tahara, E., Huis In't Veld, P.J. & Nishiyama, T. Cohesin acetylation and Wapl-Pds5 oppositely regulate translocation of cohesin along DNA. EMBO J. 35, 2686–2698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Terakawa, T. et al. The condensin complex is a mechanochemical motor that translocates along DNA. Science http://dx.doi.org/10.1126/eaan6516 (2017).

  87. Mc Intyre, J. et al. In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae. EMBO J. 26, 3783–3793 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shintomi, K., Takahashi, T.S. & Hirano, T. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat. Cell Biol. 17, 1014–1023 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Gruber, S. & Errington, J. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Sullivan, N.L., Marquis, K.A. & Rudner, D.Z. Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137, 697–707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schalbetter, S.A. et al. SMC complexes differentially compact mitotic chromosomes according to genomic context. Nat. Cell Biol. 19, 1071–1080 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Haering, S. Bisht, A. Katan, J. Ryu, S. Pud, Y. Kabiri, and A. Japaridze for discussions. This work was funded by the ERC Advanced Grant SynDiv (ERC-ADG-2014 669598) and the Netherlands Organization for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cees Dekker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eeftens, J., Dekker, C. Catching DNA with hoops—biophysical approaches to clarify the mechanism of SMC proteins. Nat Struct Mol Biol 24, 1012–1020 (2017). https://doi.org/10.1038/nsmb.3507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3507

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing