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Features of strain-induced crystallization of natural
rubber revealed by experiments and simulations

Yijing Nie, Zhouzhou Gu, Ya Wei, Tongfan Hao and Zhiping Zhou

Understanding the strain-induced crystallization (SIC) mechanism of natural rubber (NR) is a prerequisite for comprehending the
reinforcement mechanism of NR and for designing new high-performance rubber materials. With the help of new technologies
that have enabled more accurate experimental measurement of the microstructure and the use of molecular simulations that can
be applied to probe structural changes during stretching in real time, some interesting results have been found. For instance,
even at high strains, a very large fraction of the unoriented amorphous phase still remains in the stretched sample with
homogeneous or heterogeneous networks. In addition, the onset strain of SIC in peroxide-cured NR decreases with an increasing
crosslinking density, while sulfur-cured NR is independent of the crosslinking density, which cannot be explained by
conventional theories. The presence of nanofillers, entanglements, non-rubber components and pseudoend-linked networks also

results in abnormal phenomena of SIC.
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INTRODUCTION

Rubber is an indispensable raw material due to its high elasticity.
Several types of rubber can crystallize when exposed to external
s'[retching,l‘4 such as natural rubber (NR), polychloroprene rubber
and polyisoprene rubber (IR). Strain-induced crystallization (SIC)
behavior endows these rubbers with excellent mechanical properties
and good resistance to crack growth. To help researchers to under-
stand the structure—property relationships in rubber materials, many
studies have been conducted to investigate the process of SIC at a
microscopic level.

The SIC of rubber is an ‘old’ subject. Even before Staudinger®
proposed the concept of macromolecules, the British philosopher
Gough® reported that his lips sensed warmth while stretching NR. The
warmth sensed by Gough was mainly derived from the latent heat
released by SIC rather than because of changes to the conformational
entropy of NR, since the latent heat raises the temperature by up to
10K at 500% strain, while the adiabatic loss of conformational
entropy can only reach 1K if extrapolated from 100 to 500% strain,
based on the experimental data in Treloar’s book on rubber elasticity.”
In 1925, Katz® directly observed stretched NR crystallizing at
room temperature based on the measurements of wide-angle X-ray
diffraction (WAXD). Since then, many SIC studies of NR have been
conducted using WAXD, infrared dichroism and birefringence
measurements.**13 In addition, transmission electron microscopy
studies have revealed that rubber crystals exhibit different crystalline
morphologies at different strains (spherulites at low strains, shish-
kebab structures at intermediate strains and fibrous crystallites at high
strains).!*1® Flory!” is thought to be the first person to predict that
the entropic loss of stretched rubber chains results in an increased

melting point, and thus favors crystallization from a thermodynamic
point of view.

Recently, due to the development of some new technologies that
have enabled more accurate experimental measurement of the
microstructure and the use of molecular simulations, the micro-
structural changes of crystallizable rubber during deformation can be
directly studied in real time. For instance, in situ synchrotron WAXD
is one of the mature technologies that can be used to probe the SIC
process of rubber.!#2* When using conventional in-laboratory X-ray
technology, researchers must stop stretching the rubber and hold the
sample still during measurements. When stretching is stopped, the
stress is relaxed and the microstructures may change. These changes
may affect the experimental results. However, synchrotron WAXD has
a very high intensity, and can be used to observe crystallization
behavior in real time. The use of synchrotron WAXD has revealed
some results that have been inconsistent with conventional ideas and
theories.2%?* In addition to experiments, molecular simulation has
recently become a powerful method for directly probing molecular
structures and motions.>> 28 Subsequently, more details of micro-
structural evolution during stretching have been successfully observed
based on molecular simulations.?>2 Thus, the SIC of rubber has
become a ‘new’ subject. In the following sections we introduce the new
findings and discuss several key factors controlling the behaviors of
SIC of NR, which differ from the former reviews 3373 of SIC of NR.

STRETCH-INDUCED STRUCTURAL CHANGES IN
CROSSLINKED NR

The conventional theories of rubber elasticity assume that all
amorphous chains are deformed or oriented gradually during
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Figure 1 Stress—strain relationship and selected WAXD patterns collected during stretching and relaxation of natural rubber. Reprinted with permission from

Toki et al.2% Copyright (2002) American Chemical Society.

deformation. However, using in situ synchrotron WAXD (as seen in
Figure 1), Toki et al.?®** showed that even at high strains a very
large fraction of the unoriented amorphous phase remained, while
only a small fraction of oriented amorphous chains existed in the
stretched rubber. They attributed this abnormal phenomenon to the
nonhomogeneous distribution of the crosslinked network points.2%2*
During stretching, the network chains with short-chain lengths
between the dense crosslinking points can become oriented and form
crystallites, while the network chains with much longer chain lengths
remain in the random coil state. Further investigations showed that
peroxide crosslinked NR (P-NR), which is assumed to possess a more
homogeneous random network structure relative to sulfur-cured NR
(S-NR),%” also exhibited only a small fraction of the oriented
amorphous phase at high strains.”*® In other words, there may be
another explanation for the small fraction of oriented amorphous
chains in stretched rubber.

Lately, Hu's group performed dynamic Monte Carlo simulations to
investigate the SIC of polymer networks with a uniform distribution,
and they also found that amorphous bonds have low orientational
orders during stretching,®' as shown in Figure 2. Namely, the
distribution of crosslinked network points should not be the main
origin of the low fraction of oriented amorphous segments at high
strains. Furthermore, their simulation findings revealed that although
all the network chains with a homogeneous distribution as a whole are
uniformly deformed, the short segments along each chain still contain
various degrees of stretching.’! Then, during stretching, some short
segments with a high orientation initiate crystal nucleation, while
the less stretched segments participate in crystal growth with more
chain-folding.>! These results are distinctly different from conven-
tional ideas, which assume that network chains with a uniform
distribution should have the same degree of deformation.
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Stretching can cause rubber chains to orientate, which may further
influence the crystal nucleation mechanism. Hu's group employed
dynamic Monte Carlo simulations to reveal the effect of homogeneous
stretching on the crystal nucleation of polymer networks.”’ They
found that the probability of chain-folding in newly emerging
crystallites suddenly decreases beyond a critical strain and that this
is correlated with a possible transition from the formation of chain-
folding nuclei to fringed-micelle nuclei. Therefore, at low strains,
chain-folded nuclei are formed, while above the critical strain, the
formation of fringed-micelle nuclei is favored. Figure 3a comparatively
depicts the onset strain of crystallization and the critical strain for the
formation of fringed-micelle nuclei at different temperatures. Two
regions with different dominating nucleation mechanisms can be
observed. At low temperatures (T<4.0), the critical strains are higher
than the corresponding onset strains. That is, at low temperatures,
crystal nucleation occurs mainly through the formation of chain-
folded nuclei. When the strain increases to a critical value, a nucleation
mechanism transition from folded-chain nuclei to fringed-micelle
nuclei occurs. At high temperatures (7>4.0), the critical strains
coincide with the onset ones, indicating that nucleation of fringed-
micelles is preferred. This nucleation mechanism transition can be
predicted by the competition between the free energy barriers for the
two nucleation mechanisms according to the classical nucleation
theory,23940

Further investigations have revealed that there are other factors
that also influence the nucleation process during stretching. Using
synchrotron WAXD, Liu et al.*! found that self-seeding can increase
the critical strain of the nucleation mechanism transition and that the
onset strain is simultaneously reduced. They introduced residual
temperature-induced crystallization-melting crystallites into a rubber
sample. At the early stretching stage, the formation of low-oriented
crystals was observed. These low-oriented crystals are formed by
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Figure 2 Strain-evolution curves showing the orientational order parameters
of crystalline bonds and amorphous bonds, the chain-folding probability of
crystals and crystallinity at a reduced temperature of 4.5. Reprinted with
permission from Nie et al.3! Copyright (2014) Elsevier. A full color version
of this figure is available at Polymer Journal online.

folded-chain nucleation on the surface of unoriented residual
temperature-induced crystallization-melting crystallites (self-seeding).
Further stretching results in the appearance of highly oriented crystals
due to the fringed-micelle nucleation and the rotation of previously
low-oriented crystals along the stretching direction. With the help of
self-seeding, Liu et al?® successfully illustrated the occurrence of a
nucleation mechanism transition from folded-chain nucleation to
fringed-micelle nucleation during SIC of NR, validating the simulation
findings of Hu's group.

NETWORK STRUCTURE OF CROSSLINKED NR

With the help of the synchrotron WAXD technique, Tosaka and
colleagues*>** observed another phenomenon that is inconsistent with
the conventional theory. According to the classical theory of rubber
elasticity,”174%%> all the network chains were assumed to have the
same chain length. The reduction of conformational entropy that
directly dominates the onset of SIC is dependent on the crosslinking
density, and thus the onset strain should depend on the crosslinking
density. Surprisingly, Tosaka and colleagues*>*® detected that the
onset strain for S-NR is almost independent from the crosslinking
density. They attributed this special phenomenon to inhomogeneous
deformation due to the inhomogeneous topology of chains.
Nevertheless, for P-NR, the stretching ratio at the onset of SIC
decreases with increasing crosslinking density.>”*® The different
behaviors of SIC between P-NR and S-NR may be caused by the
different network structures of these two types of rubbers. Therefore,
the network structure of S-NR is thought to be less homogeneous
compared with that of P-NR.3 On the basis of some experimental
studies,***” Tkeda et al.>” proposed a two-phase model of a hetero-
geneous network structure for S-NR, in which domains of high
crosslinking density are embedded in a rubbery network matrix with
low crosslinking density, as illustrated in Figure 4. The formation of
the domain with higher crosslinking density is attributed to the active
sulfur crosslinking reactions in the presence of sulfur around zinc
oxide particles.>” They further noted that SIC mainly occurs in the
rubbery matrix with low crosslinking density, while the domains of
high crosslinking density act as reinforcing fillers. An increase in the
fraction of sulfur can only lead to an increase in the crosslinking
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Figure 3 (a) Evolution of the chain-folding probability with increasing strain
in small crystallites emerging during stretching at various temperatures. For
clarity, the six curves are vertically shifted (from bottom to top) by 0, 0.15,
0.25, 0.35, 0.45 and 0.55, respectively. The arrows indicate the strain
where the formation of fringed-micelle nuclei was preferred due to
stretching. (b) Comparison between the onset strains of crystallization and
the critical strains for the formation of fringed-micelle nuclei at various
temperatures. Reprinted with permission from Nie et al.2® Copyright (2013)
Elsevier. A full color version of this figure is available at Polymer Journal
online.

density in the high crosslinking density domain, while the crosslinking
density in the low crosslinking density domain is nearly constant.
Thus, an increase in the overall crosslinking density could not induce
the changes of the onset strain.

To confirm their two-phase network structure model, Ikeda’s group
investigated the microscopic structures of P-NR and S-NR by
performing small-angle neutron scattering measurements.**° They
successfully detected the existence of a dense network domain with a
characteristic length of 10-100 nm in S-NR, thus validating their
two-phase network structure model. The network inhomogeneities
of P-NR were strongly suppressed by the addition of dicumyl
peroxide. However, the controversy still continues. Tosaka>® proposed
a different network structure model for the thermodynamic
description of SIC. He assumed that the crosslinked rubber network
is a combination of elastically effective and fluid-like components, as
shown in Figure 5. However, there are some inconsistencies between
the three models proposed by the groups of Toki, Tosaka and ITkeda
mentioned above.’! In the models proposed by Toki's and Tosaka’s
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groups, SIC is assumed to occur in the domains with high crosslinking
density, while the low crosslinking density domains are considered to
be an incompressible fluid. However, the model proposed by Ikeda’s
group suggests that SIC occurs mostly in the rubbery matrix with low
crosslinking density, while the high crosslinking density domains have
a similar function to fillers.

Figure 4 Speculated network morphologies of P-NR and S-NR. Reprinted
with permission from lkeda et al.3” Copyright (2008) American Chemical
Society. A full color version of this figure is available at Polymer Journal
online.

Figure 5 Mechanical model representing the coexistence of two types of
network components. Component A is responsible for rubber elasticity, while
component B is elastically ineffective, acting similar to a fluid mass. The
former is illustrated as a rubber band, and the latter as a flexible bag filled
with a viscoelastic liquid. Reprinted with permission from Tosaka et al.>®
Copyright (2009) American Chemical Society.

Subsequently, Nie et al.>! proposed a three-phase model to explain

the inhomogeneous network structure. They argued that the rubber
network comprises three parts, that is, the high and low crosslinking
density domains and a fluid-like component that has very low
crosslinking density or no crosslinking points. They further assumed
that SIC mainly occurs in the low crosslinking density domains, that
the high crosslinking density domains act as reinforcing fillers and
the that fluid-like phase does not contribute to SIC. Based on
this three-phase model, they even established a visco-hyperelastic
constitutive equation to calculate directly the quantitative distribution
of the inhomogeneous network phases.®! They found that the
inclusion of clay with a high specific surface area induces the
uniformity of the network structure by decreasing the content of high
crosslinking density domains and increasing the content of low
crosslinking density domains.

The real condition is more complex than the above models.
Namely, the domains with low crosslinking density may still have a
chain-length distribution. However, directly probing how the
chain-length polydispersity influences the SIC of polymers using
experimental measurements is challenging. Thus, Zhang et al3?
performed dynamic Monte Carlo simulations to study the effects of
chain-length distribution on the strain-induced crystal nucleation of
polymer networks. A binary mixture of polymer networks with two
different chain lengths was introduced. During the simulations, the
long and short chains were stretched simultaneously. They found that
a slight increase in the fraction of short chains could immediately
lower the onset strains. Furthermore, both the short and long chains
participate in early nucleation, but the crystallinity of the short chains
begins to increase at slightly lower strains than that of the long chains.
Based on these findings, they concluded that the two types of chains
join together in crystal nucleation and growth but that the short-chain
component, which has a higher degree of deformation at a certain
strain, plays a more important role in determining the onset strain.

However, by combining the experimental observations based
on WAXD measurements with a thermodynamic description,
Candau et al.>? demonstrated that the presence of different crystallite
populations is related to different network chain densities in stretched
rubbers. During stretching, the crystallite population that is composed
of the smallest crystallites forms first at the onset strain in the domains
with the highest local crosslinking density. The larger crystallites form
at a higher strain in the domains with a lower crosslinking density.
Therefore, different network chains have different chain lengths and
prefer to form crystallites of different sizes during stretching.
Apparently, these findings are different to the simulation results
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Figure 6 Crystallinity as a function of strain during stretching. Reprinted with permission from Carretero-Gonzélez et al.5> Copyright (2008) American
Chemical Society. A full color version of this figure is available at Polymer Journal online.
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Figure 7 Schematic representation of structural evolution during stretching. Reprinted with permission from Nie et al.6” Copyright (2011) Elsevier. A full

color version of this figure is available at Polymer Journal online.

presented by Hu’s group.>? This discrepancy may be derived from the
different distributions of the network chains. In the simulation
presented by Hu's group, the network chains with different chain
lengths are mixed homogeneously, while Candau et al. proposed that
the network chains of different lengths are distributed in different local
regions. In short, the SIC behaviors of polymer networks containing
nonuniform chain lengths are strongly dependent on the distribution
of the network chains. If network chains of different lengths are mixed
homogeneously, then the short and long chains will participate in
nucleation together. Conversely, if the network chains of different
lengths are distributed in different local regions, then strain-induced
nucleation will first occur in the domains with the shortest network
chains.

EFFECT OF NANOFILLERS ON SIC IN CROSSLINKED NR

Recently, it has been found that the inclusion of even a small
amount of nanosized particles, such as nanoclays,'>33> carbon
nanotubes®®8  or graphenes,”’60 can result in a remarkable
enhancement of the mechanical properties of rubbers. However, the
corresponding reinforcement mechanism is still poorly understood.
For NR filled with conventional fillers (micron-sized fillers), the fillers
behave as heterogeneities preventing the rubber chains from aligning
and crystallizing, and thus the overall crystallinity is not increased
compared with that of unfilled rubbers, although the presence of fillers
may promote the crystal nucleation process.*>*!=%3 However, several
studies have reported that the incorporation of nanoparticles leads to a
dramatic improvement of SIC in NR.>>®*% Carretero-Gonzélez
et al.®»% investigated the effect of nanoclay on the structural evolution
of NR during deformation. They found that adding highly anisotropic
clay nanoparticles to NR induces an early onset as well as an
enhancement of crystallization under deformation. A dual crystal-
lization mechanism attributed to the alignment of clay layers during

stretching has also been observed, as shown in Figure 6.4%% The neat
rubber only shows a single crystallization step, while the rubber
nanocomposites exhibit two crystallization steps: the first step at small
strains related to the orientation of clay layers during deformation
and the second corresponded to the conventional crystallization
mechanism of unfilled NR. The dual crystallization process has also
been observed in NR filled with other highly anisotropic nanofillers,
such as carbon nanotubes.”® Qu et al.% further demonstrated that an
increase in the degree of exfoliation of the clay layers promotes the SIC
of NR. In addition, using real-time mechano-optical behavior Liang
et al.>* detected that during stretching, the planar structures of the clay
layers promote the parallel alignment of the rubber chains, and that
the clay orientation increases as the clay content increases, which
further promotes the SIC of rubber.

Using a combination of in situ synchrotron WAXD and the tube
model,%” Nie et al. analyzed the thermodynamics of SIC in P-NR filled
with nanoclay. Interestingly, they stressed that the entropy change that
was required for the onset of the SIC of the clay-filled rubber was
composed of the entropy reductions due to constraints and stretching,
as shown in Figure 7.%” The presence of the clay layers would cause
a reduction of the tube diameter (through enhancements of the
topology entanglements and packing effects).”®’! In this case, the
movement of the rubber chains will be restricted into a lower volume,
and thus the conformational entropy will be reduced compared with
the neat NR even before stretching. Furthermore, the onset strain for
the clay-filled rubber will be much smaller than that for the neat
rubber due to the entropy drop caused by the constraints before
deformation. Another study further revealed that both the clay layers
and the entanglements contribute to the constraints of the chains.”?
In addition, the orientation of the clay layers during extension can
accelerate a reduction of the conformational entropy, which controls
the SIC process. At high strains, the clay layers align completely, and

Polymer Journal
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Figure 8 (a) Orientational order parameter of polymer bonds distributed in
different locations at different distances from the center of the simulation
box (before the onset of crystallization). The inset illustrates the definition of
the locations. (b) Snapshot for strain-induced nuclei (red cylinders) at the
onset strain of crystallization. The observation direction of this snapshot is
along the stretching direction, and thus we could only see the circular end
surface of the highly oriented nuclei. The black lines denote the polymer—
filler interface. Reprinted with permission from Nie.”® Copyright (2015)
Springer. A full color version of this figure is available at Polymer Journal
online.

their restriction of the rubber chain conformation becomes most
severe. Thus, the rate of crystallization increases.

However, there are still some controversies regarding the clay-filled
rubber. Generally, it is widely accepted that strong interactions exist
between the rubber chains and organically modified clay!®>%>5:64-66
due to the high specific surface area of the exfoliated layers.
Saalwichter and colleagues’>7>  systematically investigated the
rubber-filler interactions and the network characteristics using
NMR. Surprisingly, it was found that even exfoliated clay has
obviously weaker interactions with the rubber matrix compared with
conventional fillers, such as carbon black. Thus, they proposed that
the significantly enhanced mechanical properties should be attributed
to the filler network rather than to the rubber-filler interactions.”
The formation of the filler network without strong polymer—filler
interactions can also induce the improvement of the mechanical
properties of NR. The filler network is also thought to influence the
SIC process. However, only a few studies have focused on this issue.
Through the use of dynamic Monte Carlo simulations, Nie”® studied
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the effect of the filler network confinement on the SIC of polymer
networks. An enhancement of the confinement effect on the chains
can be achieved by the reducing the lateral dimension of the
simulation box. It was found that enhancing the confinement effect
leads to a decrease in the onset strain. Therefore, the confinement
effect of the filler network without polymer—filler attractive
interactions is also beneficial for SIC. Furthermore, the confinement
of the filler network to the chain segments leads to higher segmental
orientation in the interfacial regions (as shown in Figure 8a). Those
segments with higher orientation near the filler network join in crystal
nucleation (Figure 8b), thus causing a reduction of the onset strain.

OTHER STRUCTURE FACTORS

Other factors that influence the SIC behaviors of NR include
entanglements’”’® and non-rubber components.””’>8 Numerous
experiments have been carried out to investigate the contribution of
entanglements to the mechanical properties of polymer materials.3"82
Thus, researchers believe that the presence of entanglements should also
affect the SIC behaviors of NR. Zhao et al. investigated the SIC of NR
with different strain rates at a fixed strain using synchrotron WAXD
measurements. They found that at high strain rates, the entanglement
points could act as crosslinking points.”® However, at low strain rate the
situation is more complex. According to the slip-link model,3*5 at low
strains the trapped entanglements between the crosslinking points are
able to slide and behave as slip-links.®> At high strains those
entanglements can no longer slip and behave as the crosslinking
points.3> Apparently, the slipping entanglements make no contribution
to SIC at low strains, while the presence of the non-sliding entangle-
ments promotes the SIC process at high strains. The role of entangle-
ments is also controlled by temperature. Toki et al.”’ reported that the
presence of entanglements in unvulcanized IR promotes the alignment
of chains and induces crystallization during stretching at low tempera-
tures but that entanglements cannot induce SIC at high temperatures.
However, despite the recent advances in technology, probing the
evolution of entanglements during stretching is still a challenge, and
thus our understanding of the influence of entanglements on SIC is
hindered. Molecular simulation that can be applied to identify
entanglements®®3° should become a powerful tool for investigations
aimed at elucidating the effect of entanglements on SIC in the future.
Nevertheless, unlike unvulcanized IR, unvulcanized NR still shows SIC
at high temperatures.”” The different crystallization behaviors of
unvulcanized NR and IR should be attributed to their structural
differences: for example, NR has higher stereoregularity than IR. The
simulation results of Hu's group demonstrated that the destruction of
chain stereoregularity reduces the onset strain of crystallization.*

SIC IN UNCROSSLINKED NR

Raw solid NR contains non-rubber components, including proteins,
phospholipids, carbohydrates and metal ions.”””*% In addition, some
functional groups exist at both ends of the rubber chains, which will
link with the natural impurities to form a pseudoend-linked
network.”77%9192 The appearance of the end-linked network in
unvulcanized NR facilitates the occurrence of SIC.””>”® Toki et al.
investigated the relationships between the network structure and SIC
in unvulcanized NR. They found that the naturally occurring network
in unvulcanized NR makes contributions to both SIC and stress—strain
behaviors.”® In addition, the end-linked network would also make the
entanglements permanent where chains cannot loosen, thus promot-
ing the SIC process.”” However, to date, the roles of each non-rubber
component and the functional groups have not been completely
revealed.



The investigation of SIC of NR is helpful for researchers to
understand the molecular mechanism of rubber reinforcements. For
instance, it has been demonstrated that SIC with higher crystallinity
occurs at the crack tip,”>7 where chains are overstrained compared
with chains in the bulk, and thus the crack growth is hindered.’®"’
Although based on some advanced experimental measurements, such
as synchrotron radiation micro-beam scanning X-ray diffraction®® or
infrared thermography and digital image correlation'® more detailed
information regarding the local structure or the heat source field in the
crack tip zone has not been obtained, and we still do not have a
complete understanding of the effects of SIC on crack growth.

CONCLUSION AND PROSPECTS

By using synchrotron WAXD some features of SIC have been
identified. The fraction of the unoriented amorphous phase is still
very high, even at high strains. Further investigations using molecular
simulations revealed that the inhomogeneous distribution of the
segment strains along a polymer chain rather than the distribution
of crosslinking points is the main origin of the low fraction of oriented
amorphous segments at high strains. In addition, a transition of
the preferred nucleation mechanism from folded-chain nuclei to
fringed-micelle nuclei with increasing strain was also observed.

There are several factors influencing the SIC behaviors of NR, such as
network structures, nanofillers and some other structural factors in
addition to the crosslinking points (entanglements, non-rubber compo-
nents and pseudoend-linked networks). For instance, the onset strain of
SIC of NR with a homogeneous network is dependent on the overall
crosslinking density, while the onset strain with an inhomogeneous
network depends on the local crosslinking density of elastically effective
domains instead of the overall crosslinking density. The inclusion of
nanofillers within the rubber matrix also changes the crystallization
behavior. The crystallizability will be remarkably promoted due to the
orientation of the nanofillers induced by stretching. As revealed by
molecular simulations, in addition to the polymerfiller interactions, the
confinement of filler networks also contributes to the improvement of
crystallizability. Compared with synthetic rubber, NR contains some
special structures, such as non-rubber components and pseudoend-linked
network. Entanglements, non-rubber components and pseudoend-linked
networks even exhibit a synergistic effect on the promotion of SIC.

In short, we believe that future investigations detailing the effects of
network structures, nanofillers, entanglements and non-rubber com-
ponents on SIC will be research hotspots in the field of polymer
science. In order to obtain direct correlations between SIC and
microscopic structures, rubbers with controlled structures should be
synthesized first. Furthermore, researchers should investigate the
structural characteristics to further the understanding of the effects
of non-rubber components on SIC. Moreover, molecular simulations,
which can observe molecular structures or motions directly, could be
an effective supplement for experiments. For instance, although
directly observing entanglements in experiments is a challenge,
entanglements can be directly detected by molecular simulations.
Thus, we believe that in the future the molecular mechanisms of SIC
and rubber reinforcement will be completely uncovered through a
combination of experiments and simulations.
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