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INVITED REVIEW

Design of photofunctional oligonucleotides by
copolymerization of natural nucleobases with base
surrogates prepared from acyclic scaffolds

Hiroyuki Asanuma’, Keiji Murayama', Yukiko Kamiya' and Hiromu Kashida'-?

Further development of DNA nanotechnology requires new functional oligonucleotides composed of nucleobases beyond

the native four. In this review, we demonstrate new methodology for DNA and RNA functionalization using a base surrogate
prepared from p-threoninol (2-amino-1,3-butanediol). Using this nucleobase surrogate, we can introduce functional molecules
at any position of the sequence. Our methodology is conceptually similar to the copolymerization of multiple monomers:
phosphoramidite monomers corresponding to the base surrogate and natural nucleotides are copolymerized on a solid support
to prepare the functional oligonucleotides. Copolymerization allows for stable functional motifs, including wedges, interstrand-

wedges, dimers and clusters. By selecting suitable functional molecules and motifs, we can design photofunctional
oligonucleotides, such as: (1) photoresponsive DNA that enables reversible formation and dissociation of the duplex by
photoirradiation; (2) [2+2] photocycloaddition of stilbene derivatives; (3) orientation-dependent FRET (fluorescence (Forster)
resonance energy transfer) systems; (4) sequence-specific fluorescent probe for the detection of DNA and RNA; and (5)
functional siRNA for fluorescent labeling of mature RISC (RNA-induced silencing complex).
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INTRODUCTION

In addition to its function as a carrier of genetic information, DNA
has also been engineered as a nanomaterial for the design of
nanomachines and nanostructures.'® Although various DNA
nanoarchitectures have been reported,*® possible functions are
limited by only four natural nucleobases. For further evolution of
DNA nanotechnology, new methodology that enables incorporation of
novel functional molecules into DNA and RNA is highly desired.
Conventionally, functional molecules have been introduced by
chemical modification of natural nucleotides. For example, the
5-position of the pyrimidine base is a suitable modification site
because the resulting functionality does not interfere with canonical
Watson—Crick base pairing.”® Similarly, functional molecules have
been tethered to the 2'-hydroxyl group on ribose.”"!! Although these
modifications are expected to minimize deviations from B- or A-type
duplexes, several drawbacks exist. The synthetic modification of
nucleotides is laborious. For example, it takes seven steps to synthesize
the phosphoramidite monomer of azobenzene tethered to uridine
at the 2'-position when uridine is used as a starting material.'?
Four modified monomers, corresponding to A, U(T), G and C, are
necessary to incorporate multiple functional molecules at any position
of the sequence. Furthermore, since multiple modifications at these
positions often destabilize the duplex,'® only minor changes to the
duplex are permitted.

Herein, we demonstrate a simple but effective methodology of DNA
and RNA modification. We applied the concept of copolymerization,
often employed in the field of polymer chemistry, to the synthesis of
functionalized DNA and RNA. The newly designed base surrogate
D-threoninol (2-amino-1,3-butanediol) is used as a scaffold for the
functional molecule (Figure 1).'* This diol is commercially available, or
it can be easily obtained by the reduction of commercially available
p-threonine. A functional molecule, incorporated at the 2 position of
the threoninol via an amide bond, can be easily converted to a
phosphoramidite monomer.!> Even positively charged molecules
that are difficult to tether to deoxyribose can be introduced.'®
Copolymerization of the surrogate monomer with the monomers of
four natural nucleotides on a solid support allows for ‘full model
change’ of the DNA duplex. Multiple functional base surrogates can be
introduced at any position in the sequence. In this review, we show four
stable functional motifs designed with these surrogates as well as several
photofunctional DNA and RNA oligonucleotides based on these motifs.

BASIC SEQUENCE DESIGN: INSERTION OF A BASE
SURROGATE ON p-threoninol

The base surrogate does not replace one of the nucleotides in the
sequence but rather is inserted into the duplex, creating a single-bulge
(lower panel in Figure 1).> Note that the counterstrand is a native
DNA or RNA oligomer. The use of p-threoninol is crucial, because
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Figure 1 Synthetic route of the phosphoramidite monomer of functionalized molecules tethered to threoninol as a scaffold, and the basic design of a
sequence with the base surrogate. Note that the counterstrand, with respect to the modified strand, is native DNA or RNA, and the base surrogate in the

duplex faces a phosphodiester linkage in the counterstrand.
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Figure 2 2D-NOESY spectrum between the aromatic (5.5-9.0 p.p.m.) and imino (11.0-14.0 p.p.m.) proton regions of the duplex involving azobenzene on
either (a) o-threoninol or (b) L-threoninol in H,0/D,0 9:1 at 280 K. See the supporting information for experimental details.

functional molecules bound to the 1-form significantly destabilize the
duplex while those on the p-form do not.'* The functional molecule
on the threoninol is intercalated between the adjacent base-pairs,
which is evidenced by NOESY.!” Figure 2 shows NOESY correlations
between the aromatic and imino proton signals of a DNA duplex
modified with trans-azobenzene on D- or L-threoninol. In both
scaffolds, distinct NOE signals are observed between the imino
protons (T'%, G*) of the nucleobases and the aromatic protons
(H8(H12), H9(H11)) of azobenzene, unambiguously demonstrating
the intercalation. On p-threoninol, the NOE signal between G* and
H8(H12) or H9(HI11) appears with similar signal intensity to that
between T!0 and H8(H12) or H9(H11) (Figure 2a), indicating that
azobenzene is symmetrically intercalated between the G*-~C° and
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A3-T'0 pairs without distorting the B-type duplex. However, in the
NOESY plot of the L-form, the NOE signal between G* and H8(H12)
or H9(HI11) is stronger than that between T'° and H8(H12) or H9
(HI11) (Figure 2b). This asymmetrical NOE suggests that azobenzene is
stacked closer to the pair G*~C° than to T'°-A?, indicating distortion
of the canonical B-type duplex. Destabilization of the duplex is
enhanced when multiple azobenzenes are tethered to the L-form.'*

FOUR FUNCTIONAL MOTIFS DESIGNED BY THE
COPOLYMERIZATION OF NATURAL NUCLEOTIDES AND THE
BASE SURROGATES ON bp-threoninol

The conjugation of natural nucleotides with the base surrogates on
p-threoninol allows for functional copolymers. As mentioned above,



this sequence design does not sacrifice natural base-pairs.
Furthermore, stacking interactions between the functional molecule
and the base-pairs more than compensates for the destabilization
caused by insertion of the surrogate, as long as the functional molecule
is a planar structure of suitable size.'® Hence, the incorporation of
multiple surrogates actually stabilizes the duplex. By copolymerizing
these surrogates with natural nucleotides, the four stable functional

motifs shown in Figure 3 have been developed.!’

Wedge motif

One strand is a copolymer of natural nucleotides and surrogates,
whereas its counterstrand is a homo’ polymer of natural nucleotides
(Figure 3a).'"® Upon duplex formation, two or more nucleotides are
inserted between the surrogates to avoid destabilization induced by
asymmetrical sequence design. 2D-NOESY revealed that multiple
azobenzenes were intercalated between the adjacent base-pairs
(Supplementary Figure 1).

Interstrand-wedge motif
Both strands are copolymers of nucleotides and surrogates, and two
nucleotides are inserted between the surrogates.?’ Hybridization of

a

Wedge motif
b

Interstrand-wedge (I-W) motif
Cc

Dimer motif

L
Aol

d
Cluster motif

%m%%@W

Figure 3 Four stable functional motifs designed by the copolymerization of
natural nucleotides and base surrogates on p-threoninol. (a) Wedge motif,
(b) Interstrand-wedge (I-W) motif, (c) Dimer motif, (d) Cluster motif.
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these two strands results in an alternating copolymer of base-pairs and
surrogates (Figure 3b). NMR measurements revealed that all the
functional molecules bound to threoninol moieties were intercalated
without disturbing the base pairing of the natural nucleotides.?! This
motif is remarkably more stable than the wedge motif due to its
symmetrical sequence design.

Dimer motif

Both strands are alternating copolymers of nucleotides and surrogates
(Figure 3c). As the surrogates are located at base pairing positions in
each strand, hybridization results in stacked pairs of surrogates as well
as base pairing of nucleotides.?>?? This stacking interaction between
the functional molecules, as well as the symmetrical sequence design,
remarkably increases the stability of the duplex.

Cluster motif

The cluster motif is an extension of the dimer motif. Both strands are
composed of ABA-type block copolymers, and the surrogates are
alternately stacked in the duplex (Figure 3d).242¢ Consecutive base
surrogates are not necessarily arranged at the center of the strands;
terminal positions are also possible.?” Interestingly, this motif accepts
various functional molecules. Even non-planar molecules, such as
cyclohexyl groups, can be assembled, stabilizing the duplex by
hydrophobic interactions.?®3% If the interaction between the
surrogates is sufficiently strong, stable hybrid clusters can be prepared
without the assistance of natural base-pairs.>!

By selecting suitable functional molecules and motifs, functions that
are difficult to achieve with natural DNA and RNA can be realized. In
the next section, five kinds of photofunctional oligonucleotides that
have been developed are introduced.

PHOTOREGULATION OF THE FORMATION AND DISSOCIATION
OF DNA DUPLEXES BY AZOBENZENE-TETHERED DNA

Spontaneous hybridization is a key feature that characterizes DNA and
RNA as supramolecular assemblies. Almost all of the DNA-based
nanomachines or nanoarchitectures, as well as enzymes that catalyze
DNA replication or transcription, are based on this supramolecular
property. Hence, if the formation and dissociation of DNA duplexes
can be controlled via irradiation with light of a specific wavelength,
photon-driven nanomachines and the photoregulation of gene
expression can be expected. For this purpose, photoswitchable
molecules are introduced into DNA or RNA. Among photoresponsive
molecules, azobenzene derivatives are suitable for this method because
(1) they are photochemically stable and do not decompose in aqueous
environments; and (2) trans—cis structural isomerization reversibly
occurs by irradiating azobenzene with light of wavelength longer than
300 nm.3> Multiple azobenzene moieties have been tethered to DNA
via D-threoninol, and reversible photoregulation of duplex formation
has been realized.!® In the trans form (1>400nm), the planar
azobenzenes are intercalated and stabilize the duplex.!” In the cis
form (300 nm<A<400nm), however, the non-planar structures
interfere with the base pairing of adjacent nucleobases,**> which
results in dissociation of the duplex. For the photoregulation of
hybridization, all four functional motifs are available. Figure 4a
shows a schematic illustration of the photoresponsive hairpin-
tethering of six azobenzenes in an Interstrand-wedge motif.?
Visible light irradiation isomerizes azobenzene to the planar trans
form, which closes the hairpin. In contrast, ultraviolet (UV) light
irradiation induces a random coil transition due to the dissociation
of the stem. A gel-shift assay (Figure 4b) revealed that the band
appeared only at the hairpin position after visible light irradiation,
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Interstrand-wedge motif. (b) Gel-shift assay of the photoresponsive hairpin after UV or visible light irradiation.2? Lane 1, 30-nt single-stranded DNA; Lane 2,
the photoresponsive hairpin after 3 min UV irradiation at 60 °C; Lane 3, the photoresponsive hairpin after 1 min visible light irradiation; Lane 4, the native
hairpin DNA without azobenzene moieties. Adapted with permission from Liang et al.2° Copyright (2009) Wiley-VCH Verlag GmbH & Co. KGaA
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Figure 5 Application of photoresponsive DNA to (a) a photon-driven nanomachine, (b) a photoresponsive DNA enzyme that can reversibly switch the cleavage
of mMRNA, (c) a photoresponsive nanocapsule that is collapsed by irradiation with UV light.

whereas a new band emerged at the random coil position after
UV irradiation.?® Thus, perfect photoregulation of the formation
and dissociation of the DNA duplex was attained using an
Interstrand-wedge motif with six tethered azobenzenes. Photon-
driven nanomachines (Figure 5a),’* photoswitchable DNA enzymes
(Figure 5b),3>% and photoresponsive nanocapsules (Figure 5c)3’
have been designed based on the reversible photoregulation of
hybridization with photoresponsive oligonucleotides. Other photore-
gulated systems have been successfully designed using the azobenzene

derivatives. 3841
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[2+2] PHOTOCYCLOADDITION OF AGGREGATED STILBENE
DERIVATIVES IN DNA DUPLEXES

Stilbene is well-known as a photoresponsive molecule that can be
subjected to photoisomerization between its trans and cis form. Unlike
azobenzene, cis-to-trans photoisomerization of stilbene requires UV
light of wavelengths shorter than 300 nm,*? which can also cause the
formation of undesired thymine dimers. Furthermore, intercalated
trans stilbene is not easily photoisomerized, as isomerization requires
rotation of the benzene ring around the C=C bond through
disruption of the m-bond,*> which needs sufficiently wide space.



Homo or Hetero

Design of photofunctional oligonucleotides
H Asanuma et al

Photocrosslink

dimer

o
T
I.I

L
O Stilbene

¥
/N/
\\I

Methylstilbazolium

0

Styrylpyrene

N
O Cyanostilbene

CN

Nitrostilbene

|
48
~

Z N
>~ 0
Stilbazole Aminostilbene

Figure 6 [2+2] Photocycloaddition reactions of stilbene derivatives in a DNA duplex.

Hence, stilbene derivatives cannot be used in place of azobenzenes for
the reversible photoregulation of hybridization. However, stilbene
derivatives undergo [2+2] photocycloaddition reactions,***> which
can be useful for the covalent crosslinking of two strands. We have
introduced stilbazoles into duplexes as a dimer motif and applied
them to the crosslinking of the two strands via photocycloaddition
(Figure 6).¢ Before photoirradiation, single species of the stable
dimers were confirmed by NMR analysis. UV spectra and TOF-MS
analysis revealed that photocycloaddition reactions occurred rapidly
following irradiation with UV light at 340 nm, which significantly
increased the stability of the duplex. However, both HPLC and NMR
analyses showed that two photocrosslinked products were generated.
Before photoirradiation, stilbazole can adopt two conformations,
between which interconversion is possible, via rotation about sigma
bonds. Very fast interconversion resulted in averaged NMR signals,
preventing discrimination between the two conformers. After UV
irradiation, however, the photocycloaddition reaction yielded two
diastereomers, because the two conformers were fixed by the
photocycloaddition reaction (Figure 7).

Molecular modeling, as well as NMR analysis, revealed that the
stilbene dimer requires a suitable conformation for photocyclo-
addition in the DNA duplex, which allowed us to investigate the
intrinsic reactivity of stilbene derivatives. Photocycloadditions have
also been investigated in homogeneous solutions, in which photo-
reaction follows dimer formation. Accordingly, photocycloaddition
obeys second-order reaction kinetics and depends on the association
constant of dimer formation as well as the intrinsic photoreactivity. In
this copolymerized DNA-based system, the dimer is already formed in
the duplex, so the association step has already occurred and only the
intrinsic photoreactivity determines the rate. Thus, the photocyclo-

addition becomes first-order in the DNA duplex at temperatures
below the melting temperature, and the rate of reaction reflects only
the intrinsic photoreactivity. Yamada et al. previously reported that
photocycloaddition reactions of stilbazole proceeded faster in the
presence of HCL*’ This acceleration was hypothesized to be due to
favorable dimer formation associated with the positive charge on the
protonated pyridine ring, but an increase in the intrinsic reactivity by
protonation could not be ruled out. Our investigation of the dimer
motif revealed that the first-order reaction rate of stilbazole was almost
the same as that of methylstilbazolium,*® which supports the above
hypothesis. This study demonstrates that our system is suitable
for evaluating the intrinsic reactivity of stilbene derivatives. We
synthesized various stilbene derivatives, shown in Figure 6, and
evaluated the intrinsic reactivities of the resulting homo-dimers.*3
We found that the reactivity was closely related to the excitation
energy. Recently, we have developed a styrylpyrene moiety (Figure 6)
that effects photocycloaddition with visible light irradiation
(455 nm).* Although its quantum yield is not high, due to the low
excitation energy, relatively harmless 450 nm light is advantageous for
biological applications. Interestingly, this crosslinking reaction was
reversible; the cycloreversion (the reverse reaction of cycloaddition)
occurred upon irradiation with light of A=340 nm. Like azobenzene,
styrylpyrene can induce crosslinking and un-crosslinking of two
strands reversibly, via irradiation with UV (1=340nm) or visible
light (A =455 nm).

Compared to the homo-clusters, hetero-clusters are very difficult to
prepare. Thus, cross-photocycloaddition between different stilbene
derivatives has not yet been achieved. However, using our interstrand
clustering method,®>® it is easy to prepare hetero-dimers of
stilbene derivatives by hybridizing two complementary strands with
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Figure 7 Two diastereomers produced by photocrosslinking.#® Adapted with permission from Kashida et al.*s Copyright (2013) American Chemical Society.

different chromophores (Figure 6). We investigated the cross-reactivity
of stilbene derivatives and found that reactivity was highly correlated
with the highest occupied molecular orbital (HOMO)/lowest
unoccupied molecular orbital (LUMO) energy gaps between the
derivatives.*® Interestingly, non-reactive nitrostilbene was able
to cross-react with methylstilbazolium and stilbazole, because these
two moieties have HOMO/LUMO energies similar to that of
nitrostilbene.

ORIENTATION-DEPENDENT FRET IN THE DNA DUPLEX
Fluorescence (Forster) resonance energy transfer (FRET), nonradiative
energy transfer from an excited donor fluorophore to an acceptor
chromophore,®>? is an effective method for the control of the
fluorescent behaviors of chromophore assemblies. FRET is mainly
applied to the measurement of the distance between biomolecules
labeled with a donor and an acceptor in nanoscale (that is, as a
molecular ruler).”® Increases in the apparent Stokes shift improve the
sensitivity of fluorescent probe.”* Theory predicts that FRET efficiency
depends on both the distance between, and orientation of, the donor
and acceptor dyes. Practically, most FRET analyses focus on the
distance-dependence by assuming that mutual orientation is averaged
by free movement. However, if the chromophores are fixed and their
movement is restricted, FRET efficiency should be affected by their
orientation as well as the distance. Only limited reports have been
presented on orientation-dependent FRET.3>¢

The DNA duplex is an ideal scaffold to compare theoretical
prediction of FRET with experiments, because the canonical B-type
duplex takes a rigid helical structure and its structural parameters have
been determined. Accordingly, if the donor and acceptor are fixed
in the duplex, and the number of base-pairs between them are
systematically changed, both the distance and orientation of FRET
pairs are simultaneously controlled in a predictable manner.>>>°
We have introduced a typical FRET pair, pyrene and perylene, into
a DNA duplex via p-threoninol as donor and acceptor, respectively
(Figure 8a).>*>’ Firmly intercalated chromophores cannot move freely,
so FRET efficiency is expected to reflect orientation between the donor
and acceptor as well as distance. Figures 8b and ¢ shows static emission
intensities of pyrene and perylene as a function of the number of
base-pairs between them. As the number of base-pairs increased,
a decrease in the perylene emission and an increase in the pyrene
emission were synchronously observed, reflecting distance-dependent
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FRET. However, these changes were not monotonous, but periodic:
local maxima and minima of pyrene and perylene emission at 8,
13 and 18 base-pairs were observed, indicating unusual decreases in
FRET efficiency.”® Similar local maxima were also observed in the
life-time of pyrene at the same number of base-pairs. This cycle of
five base-pairs corresponds to a half-turn (180°) of the B-type helix
(10.4 base-pairs per turn), clearly reflecting the orientation between
the pyrene and perylene moieties.

FRET efficiencies experimentally determined from both static
fluorescence and life-time measurements of pyrene were plotted
against the number of base-pairs (Figure 8d, the ‘FRET plot’). The
decline in efficiency at 8, 13 and 18 base-pair separations suggests
that the transition dipole moments of pyrene and perylene are
perpendicularly oriented. We also compared these experimental values
with theoretical prediction by assuming B-type geometry, which
typically exhibits the structural parameters of axial rise and rotation
angle per residue of 3.2 A and 36°, respectively. As shown in Figure 8d,
the calculated values are in excellent agreement with the experimental
values.>® This result clearly demonstrates that this FRET system using
donors and acceptors bound to p-threoninol precisely reflects the
orientation and distance factors of B-type geometry and that the
FRET plots provide duplex structural information. An advantage
of this method is that it is not limited to pyrene—perylene; any
donor—acceptor combination can be selected. These FRET plots can be
applied in the structural analysis of oligonucleotides, even in the case
of artificial duplexes in aqueous solution, through selection of a
suitable donor—acceptor pair.

IN-STEM MOLECULAR BEACONS AND STEMLESS LINEAR
PROBES THAT DETECT DNA AND RNA WITH SEQUENCE
SPECIFICITY

The sequence-specific detection of DNA and RNA is a key biological
tool for individualized medicine and for visualization of functional
RNAs that play important roles in cells. As hybridization occurs
sequence-specifically, even one mismatched pair destabilizes the
duplex. However, silent natural bases cannot give rise to visible strand
recognition signals. Hence, probe molecules that convert strand
recognition into detectable signals are introduced into oligonucleo-
tides. Conventionally, molecular beacons that tether fluorophores and
quenchers at either termini of hairpin DNA have been applied to the
fluorescent detection of DNA and RNA (Figure 9a).”” In the absence



a
5" -ATCAGTAP |A ATAGTCA-3'
P =
3' -TAGTCAT\ /|T] ETATCAGT-5"
b
3
RY
=y
g Emission from pyrene
3
g
3
g d
o
=)
w
123 45678 91011121314151617 181920 21 =
Distance / bp 'e‘
)
° 5
E 40 'S
B E
é % Emission from perylene :
=
= w
2 20 o
o (™
3 10
o
S
T 0 4

123 4567 8 91011121314151617 181920 21
Distance / bp

Design of photofunctional oligonucleotides
H Asanuma et al

285

5 R O‘ E= 5 R
o] i O

h- 0=P-O
?
n/bp
1 5 10 15 20
1.0 === N - KZ:?/3 i Cylinder model
B IS 1y N Rt
\
0.8 AN
»
\
0.6 1 . O}}
®
0.4 1 bol \O\
N
N
0.2 1 0.
o
0.0 T T OD:C‘Q e
0 20 40 60 80
Distance / A

Figure 8 Orientation-dependent FRET system using a DNA duplex in which bp-threoninol-tethered pyrene and perylene function as donor and acceptor,
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involving multiple fluorophore-quencher pairs in a dimer motif. (c) A stemless linear probe involving multiple fluorophores.

of target DNA or RNA, the fluorophore does not emit light due to the
contact with the quencher in the closed hairpin. Hybridization with
the target opens the hairpin and lights up the fluorophore that has
been separated from the quencher. Accordingly, MBs (molecular
beacon) can convert strand recognition into a fluorescent signal.

However, MBs have several drawbacks. Only one pair of fluorophore
and quencher can be incorporated at the termini; multiple fluor-
ophores are not possible. Additionally, insufficient contact between the
fluorophore and quencher in the absence of target DNA, results in
background emission due to breathing effects of the terminal pairs in
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the closed MB, which lowers the sensitivity. Finally, hybridization of
the target with the loop region of the MB is followed by the
dissociation of the stem, which delays the response speed.

To overcome these drawbacks, we have developed an in-stem
molecular beacon (ISMB) that involves multiple fluorophore-
quencher pairs bound to pD-threoninols at the stem regions as a dimer
motif (Figure 9b).°%%3 This design allows for the incorporation of
multiple fluorophores and an increase in emission intensity when the
ISMB is hybridized with the target. Strong contact between the
fluorophore and quencher in the stem remarkably suppresses
background emissions in the absence of the target. As a result, the
signal-to-background ratio (S/B ratio) is greatly improved. However,
incorporation of many fluorophore-quencher pairs requires longer
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stems, which further delayed the response rate. Without the assistance
of a chaperone polymer, the slow response time of the ISMB could not
be solved.®

To overcome all of the above drawbacks, we have recently designed
a stemless linear probe involving multiple fluorophores in DNA in a
wedge motif (Figure 9¢).> In the absence of the target, the
flexible linear probe facilitates self-quenching of the fluorophores.
Self-quenching is improved greatly when the number of fluorophores
increases. Hybridization with the target separates each fluorophore by
intercalation and causes all of the fluorophores to fluoresce. Hence, as
the number of fluorophores increases, the sensitivity of the probe
becomes greater. The absence of a stem structure greatly improved the
response rate, and the second-order rate constant of the linear probe is
~80-fold greater than that of the MB targeting the same sequence.®
The introduction of fluorescence quenchers at the termini is also an
effective way to minimize background emission. We have designed a
stemless linear probe with four perylenes and two anthraquinones as
fluorophore and quencher, respectively (Figure 10a). Using this
system, the S/B ratio became as large as 1600.%

Our linear probe has another advantage over MBs. The loop regions
of MBs are typically composed only of natural DNA, and MBs are
easily degraded in cell lysate, causing them to emit light even in the
absence of the target.5” This low nuclease resistance prevents the
application of MBs in cells. In contrast, a linear probe, in which
non-natural base surrogates are intermittently inserted into DNA, has
improved nuclease resistance.®® This property is advantageous for
fluorescent imaging of RNA in living cells. A linear probe targeting a
region of the DsRed gene was designed (Figure 10a) and applied to the
fluorescent imaging of mRNA in living cells. As designed, the linear
probe exhibited a blue emission from cells transfected with a plasmid
encoding DsRed (Figure 10b).%

The linear probe can label not only single-stranded DNA or RNA
but also double-stranded DNA (dsDNA), with the aid of unmodified
peptide nucleic acid (PNA). As base surrogates in the oligonucleotide
interfere with hybridization with PNA, the linear probe does not form
a stable duplex with its complementary PNA and remains quenched
even in its presence. In contrast, both the linear probe and PNA form
stable duplexes with DNA, so that dsDNA can be fluorescently labeled
in a strand-invasive manner (Figure 11). We designed a linear
probe with a perylene derivative and anthraquinone and achieved
strand-invasive labeling of dsDNA in the presence of PNA using
heat-shock-treatment-like polymerase chain reaction.®®

FLUORESCENT TRAFFICKING OF siRNA USING A
FLUOROPHORE-QUENCHER PAIR

Short interference RNAs (siRNA) are now commonly used to knock-
out specific genes through an endogenous RNA interference (RNAi)
pathway, due to their powerful silencing ability.*7? Tt is widely
accepted that the antisense (guide) strand of siRNA is incorporated
into the RNAi machinery to form an RNA-induced silencing complex
(RISC). However, the RNAi machinery in living cells is not yet fully
understood. The development of an siRNA-based molecular probe
would thus be a useful tool for tracing the fate of siRNA in cells. For
this purpose, we designed functional siRNA (Figure 12) in which a
fluorophore (thiazole orange; TO) and a quencher (methyl red; MR)
pair was incorporated as a dimer motif near the 5'-terminus of the
sense strand.”> The siRNA does not emit fluorescence before
incorporation into the RNA machinery due to the close contact of
TO with MR, whereas the mature RISC involving the single-stranded
antisense sequence exhibits emission from TO. The introduction of
the dimer at the fifth position from the 5'-terminus of the sense strand
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is particularly important because this specific position allows for the
selective loading of the antisense strand to RISC without decreasing
the RNAi activity.”>’* Using this functional siRNA, we could
successfully monitor the intracellular fate of siRNA in living cells.

CONCLUSIONS

In this review, methodology for the novel functionalization of DNA
and RNA has been demonstrated. Because the copolymerization
concept is simple and easily extended, other applications in addition
to those enumerated above have been achieved, including a quantum-
dot-like fluorophore assembly’> and new artificial nucleic acids, acyclic
threoninol nucleic acid’®7” and serinol nucleic acid,”®”° that can form
more stable homo-duplexes than DNA or RNA. Due to facile
programmability and availability, fields beyond nanotechnology have
turned to DNA and RNA. Recent years have seen the development
of a new field of ‘molecular robotics,” in which integrated nano-
to microsystems of sensors, logic gates and actuators operate
autonomously in response to the environment.3° In this novel field,
DNA and RNA are regarded as useful nanomaterials for device design.
We believe that the concept of ‘copolymerization,” together with new
XNAs, will contribute to the development of these new fields.
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