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Enhancing pediatric clinical trial feasibility through the use of
Bayesian statistics
Robin A. Huff1, Jeff D. Maca2, Mala Puri3 and Earl W. Seltzer4

BACKGROUND: Pediatric clinical trials commonly experience
recruitment challenges including limited number of patients
and investigators, inclusion/exclusion criteria that further
reduce the patient pool, and a competitive research land-
scape created by pediatric regulatory commitments. To
overcome these challenges, innovative approaches are
needed.
METHODS: This article explores the use of Bayesian statistics
to improve pediatric trial feasibility, using pediatric Type-2
diabetes as an example. Data for six therapies approved for
adults were used to perform simulations to determine the
impact on pediatric trial size.
RESULTS: When the number of adult patients contributing to
the simulation was assumed to be the same as the number of
patients to be enrolled in the pediatric trial, the pediatric trial
size was reduced by 75–78% when compared with a
frequentist statistical approach, but was associated with a
34–45% false-positive rate. In subsequent simulations, greater
control was exerted over the false-positive rate by decreasing
the contribution of the adult data. A 30–33% reduction in trial
size was achieved when false-positives were held to less
than 10%.
CONCLUSION: Reducing the trial size through the use of
Bayesian statistics would facilitate completion of pediatric
trials, enabling drugs to be labeled appropriately for children.

The field of pediatric research has experienced impressive
growth as a result of the United States (US) and the

European Union regulations that require newly developed
drugs to be studied in children (1). Pediatric studies are
typically initiated after approval of the adult indication, which
allows a positive benefit/risk assessment to be first established
in adults. During execution of the adult clinical program, the
US Food and Drug Administration (FDA) and European
Medicines Agency require and approve plans for the pediatric
trials, known as Pediatric Study Plans in the US and Pediatric
Investigation Plans (PIPs) in Europe. However, execution of
the pediatric trials is often more difficult than the adult trials
because of there being generally far fewer pediatric patients

and the complexities of studying a vulnerable patient
population. In addition, the regulations that have spurred
the research by requiring trials for each newly developed drug
have also resulted in a competitive pediatric clinical trial
landscape for certain indications. The challenges encountered
in conducting pediatric trials necessitate innovative
approaches to the design and conduct of these trials. In this
paper we explore the approach of utilizing Bayesian statistics
in simulating pediatric clinical trials of Type-2 diabetes (T2D)
drugs as an illustrative example.
Pediatric T2D trials exemplify the challenges encountered

in pediatric research. In addition to there being an insufficient
pediatric trial infrastructure and inclusion/exclusion criteria
that reduce the available patient pool, T2D trials also contend
with a limited number of patients, whose demographic
characteristics further impair recruitment, and a competitive
research landscape. Currently in the US and European Union,
only metformin and insulin are approved for pediatric use. A
plethora of agents have been approved or are in development
for treatment of adult patients, and, for recently developed
drugs, pediatric development plans are in place. As of early
2017, PIPs had been approved for 24 products (nine
glucagon-like peptide-1 (GLP-1) agonists, five dipeptidyl
peptidase-4 inhibitors, six sodium-glucose co-transporter 2
inhibitors, one sodium-glucose co-transporter 1/2 inhibitors,
one G-protein-coupled receptor 40 agonist, one GLP-1 and
glucagon receptor co-agonist, and one dopamine agonist) that
are being developed by 15 companies. Of these products, 12
are already marketed for use in adults in the European Union.
The products will also need to have approved Pediatric Study
Plans in the US, but because US pediatric commitments are
not publicly disclosed until product approval for the adult
indication, PIPs provide a more complete accounting of
patient recruitment needs. Using an average of 224 patients
per T2D PIP (2), over 5,000 patients would be needed to
satisfy current PIP commitments, with half of those patients
needed now to support trials for products that have already
been approved in adults.
On the basis of the data from the SEARCH for Diabetes in

Youth Study, the prevalence of T2D in children of 10–19
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years of age was estimated to be 0.46 per 1,000 children in
2009, or roughly 20,000 cases (3,4). Assuming a projected
yearly increase of 2.3% (ref. 5), fewer than 25,000 pediatric
patients diagnosed with T2D are estimated to currently be in
the US, and of those patients, only 500–600 are estimated to
be eligible trial subjects, for reasons elaborated below (6).
Prevalence in European countries is far less than that in the
US, offering a minimal increase in the patient pool for clinical
trials. Of the limited number of pediatric patients diagnosed
with T2D, only a small percentage qualifies for inclusion in
clinical trials. Metformin, which is recommended by the
American Academy of Pediatrics as first-line therapy (7),
provides adequate control for many patients (up to 50% of
patients in the Treatment Options for Type 2 Diabetes in
Adolescents and Youth (TODAY) study) (8), sizably dimin-
ishing the patient pool. In addition, insulin use has
traditionally been an exclusion criteria, which eliminates
approximately half of the pediatric patient population,
although recently this exclusion criterion has been removed
from some trials (9). Additional inclusion/exclusion criteria
(e.g., required hemoglobinA1c range, major medical condi-
tions, concomitant meds, and prior diabetes medication use)
further shrink the available patient pool.
In addition to having only a small patient pool, patient

demographics contribute to recruitment challenges. The vast
majority of pediatric patients are minorities, with most
coming from socioeconomically disadvantaged environments
as evidenced by annual family income or dependence on
government insurance (10,11). In the US, the higher rates of
uninsured and the associated decreased access to healthcare
experienced by minorities make it less likely that these
patients will be aware of or participate in clinical trials (12).
Patients from lower socioeconomic environments also
encounter logistical impediments to enrolling in and
completing clinical trials such as address changes, limited
transportation options, and the inability of parents to miss
work in order to bring the child to study visits (9,13).
The difficulties described above in recruiting patients into

pediatric T2D trials are applicable in other challenging
pediatric indications and have led to proposals for innovative
approaches that include improving trial infrastructure, broad-
ening inclusion/exclusion criteria, and using novel study
designs (9,13). In this paper, we conduct an elementary
exploration of the application of Bayesian statistics to
pediatric T2D trials to illustrate the potential of this approach
to enhance the feasibility of pediatric trials. Bayesian statistics
incorporates prior knowledge or beliefs about the effect of a
treatment into the final conclusions of a study. This is
accomplished by using an assumed distribution for the model
parameters and then merging them with the distribution
estimated from the data collected in the study to form
the posterior distribution. Subsequent inferences about the
treatment effect are based on the posterior distribution, which
in this case is a weighted average of knowledge gained from
the pediatric trial and the pre-existing adult information.
The inclusion of prior information allows for a more precise

conclusion; therefore, the sample size of the trial can be
reduced, making the trial more feasible. For those interested
in advanced Bayesian methodologies, the Bayesian Statistics
Working Group of the Drug Information Association recently
published a paper examining the application of a variety of
Bayesian methodologies to pediatric trials (14).
The impact of Bayesian methods on sample size for adult

studies has been investigated in a variety of settings (15,16).
To warrant using a Bayesian approach for pediatric trials, it
must be reasonable to assume that the pathophysiology of
the disease, which has an impact on the relevance of the
drug mechanism of action, and the absorption, distribution,
metabolism, and excretion (ADME) of the drug are similar in
adults and the pediatric age group being studied. The latter
determination should take into account maturation of systems
involved in absorption and excretion (e.g., renal, hepatic, and
gastric), as well as the ontogeny of relevant metabolic enzymes
and drug transporters. Finally, the dose–exposure relationship
in children must be known, or plans to confirm it should be
incorporated into the pediatric trial.
Although the concept of applying Bayesian statistics to

pediatric trials has been discussed by experts in academia,
pharmaceutical companies, and regulatory agencies
(5,14,17,18), little has been published that quantifies the
impact of Bayesian assumptions on the sizing of pediatric
trials. In this paper we utilized data from pivotal T2D adult
studies conducted with six drugs, two from each of the three
recently approved drug classes, to create informative priors
for the treatment effect on hemoglobinA1c (HbA1c). We then
ran multiple simulations for each agent in which we varied
the weight given to the adult prior information in order to
determine the impact on both the pediatric trial sample
size and Type-I error, often referred to as the false-positive
rate. The results demonstrate the potential for the use of
Bayesian statistics to facilitate the completion of pediatric
studies.

METHODS
We utilized knowledge about the effectiveness of six drugs approved
for treatment of adults with T2D to create informative priors for
HbA1c treatment effect parameters. The drugs are: canagliflozin
(Janssen Pharmaceuticals, Titusville, NJ) and dapagliflozin (Astra-
Zeneca Pharmaceuticals, Wilmington, DE)—both SGLT-2 inhibitors;
sitagliptin (Merck, Whitehouse Station, NJ) and linagliptin
(Boehringer Ingelheim International GmbH, Ingelheim, Germany)
—both DPP-4 inhibitors; and liraglutide (Novo Nordisk A/S,
Bagsvaerd, Denmark) and dulaglutide (Eli Lilly and Company,
Indianapolis, IN)—both GLP-1 agonists. The adult T2D clinical trial
data used for creation of the prior distributions are summarized in
Table 1. The trials were selected in which the drug being investigated
was added to metformin therapy and the effect on HbA1c level was
compared with the effect of metformin alone at 24–26 weeks. We
selected data from these trials because they are likely to be the most
relevant to pediatric trials, considering American Academy of
Pediatrics’s recommendation that metformin be first-line therapy.
For drugs that have more than one dose approved, data for the
lowest approved dose were used to develop the prior distribution.
We ran simulations to investigate the power to detect a treatment

difference (investigational drug+metformin vs. metformin) in which
we varied the weight of the contribution of the adult prior relative to
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the to-be-conducted pediatric clinical trial. Ten thousand repetitions
were used for each simulation, using the open source programming
language of R. The posterior distribution, which can be thought of as
a weighted average from the pediatric trial and the pre-existing adult
information, was then derived assuming a normal distribution for
both adult and pediatric patients. We further assumed the mean
treatment-effect size and SD to be the same in adults and children
because the fundamental pathophysiology of the disease (19,20), the
mechanism of action of the drugs, and the relevance of the HbA1C
endpoint do not differ between adolescents and adults. Supporting
this assumption, a similar treatment effect was achieved in adults and
children treated with metformin, the only drug for which pivotal data
are available in both patient populations (Table 2) (21,22). Should
data for a drug warrant assuming a different treatment effect size or
SD in children, different assumptions can be incorporated into the
simulation. When planning a study, a robustness or sensitivity
analysis should be performed to understand the effects of mis-
specification.
For each drug, the prior distribution for the treatment effect was

calculated using the estimated mean and SD from the adult study. A
prior for the treatment difference was used rather than separate
priors for the treatment and control groups, as this was the
information available for each of the drugs we evaluated. Because
of the comparatively large adult sample size, using the entire sample
size to calculate the prior would result in the adult study strongly
influencing the analysis of the pediatric study. To reduce the
influence of the prior distribution, we used an artificially smaller
sample size that was fixed as a ratio to the sample size for the
planned pediatric study. To simulate data for the pediatric patients,
data were randomly generated from a normal distribution using the

mean and SD of the assumed adult population parameters for the
treatment difference relative to control.
For the initial simulations, we equally weighted the adult data

to the pediatric data that will be collected in the to-be-performed
trial. This means that the prior distribution for the treatment effect
was calculated using the estimated mean and SD from the adult
study and the sample size of the pediatric study. However, when the
study was powered at 90%, an equally weighted prior still had a large
influence on the analysis of the pediatric study. Therefore, in
subsequent simulations we decreased the ratio of the number of adult
patients to pediatric patients in an iterative manner to achieve a
Type-1 error of o10% while maintaining at least 90% power. The
value of 10% was arbitrarily chosen, and selection of an appropriate
value is a topic considered in the Discussion.
For each of the 10,000 repetitions simulated per case, after finding

the posterior distribution using the historical prior and the simulated
pediatric data, the particular repetition was considered a success if
97.5% of the posterior distribution was above the value of 0, implying
a treatment benefit. The minimum probability that justifies use of a
treatment is debatable and may depend partly on the importance of
the potential clinical benefit relative to risk. The 97.5% value was
chosen to align with the typical frequentist Type-I error. If the
simulated pediatric data were generated from a distribution with no
treatment difference using the same prior distribution, then those
cases that also satisfied this condition were considered to be a Type-
I error.

RESULTS
For all drugs that we evaluated, the initial Bayesian simulation
that used an equal weighting of adult prior and pediatric trial
data resulted in an estimated pediatric sample size that was
75–78% smaller than the sample size estimated using frequen-
tist statistics, while achieving 90% power (Table 3). However,
these notable decreases in sample size were associated with
Type-1 errors ranging from 34 to 45%. Results were consistent
for both members of each drug class, and across all three drug
classes.
In subsequent simulations the weight of the adult prior to

pediatric trial data was decreased to exert greater control over
Type-1 error. Table 4 presents the parameters necessary
for the simulations to result in a Type-1 error of less than
10% while still achieving 90% power to detect a treatment
effect. The weightings varied from 1:5 for linagliptin to 1:7 for

Table 1. Summary of adult T2D clinical trial data used for creation of prior distributions

Drug Dose (mg) Treatment duration (weeks) Mean decrease in HbA1c % (treatment—placebo) SD Reference

SLGT-2 inhibitors

Canagliflozin 100 26 0.62 0.78 Lavalle-Gonzalez et al. (35)

Dapagliflozin 5 24 0.36 0.84 Bailey et al. (36)

DPP-4 inhibitors

Linagliptin 5 24 0.66 0.85 Taskinen et al. (37)

Sitagliptin 100 24 0.65 1.46 Charbonnel et al. (38)

GLP-1 agonists

Dulaglutide 0.75 26 1.05 1.03 Nauck et al. (39)

Liraglutide 1.2 26 1.1 1.55 Nauck et al. (40)

T2D, type 2 diabetes.

Table 2. Effect of metformin on HbA1c in adults and in children

Population Dose
(mg/day)

Duration of
treatment

HbA1c (%) at end
of double-blind

treatment

Placebo Metformin

Adultsa ≤ 2,550 Up to 29 weeks 8.6 ± 0.2 7.1 ± 0.1

10–16 Year
oldsb

≤ 2,000 Up to 16 weeks 8.6 ± 0.2 7.5 ± 0.2

aResults are reported by the authors as mean ± SEM(21). It is not clear whether the
mean was adjusted for baseline, but baseline values were similar between placebo
and metformin groups (8.2 ± 0.2% and 8.4 ± 0.1%, respectively).
bResults are reported by the authors as mean (adjusted for baseline) ± SD(22).
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dulaglutide, with canagliflozin, dapagliflozin, sitagliptin, and
liraglutide all requiring 1:6 weightings. Because dulaglutide
had a small sample size estimated by frequentist statistics,
changes of one subject per group had a great impact on the
simulation parameters. Because the weight of the adult prior
is directly related to the reduction in pediatric trial sample
size, the reduction in sample size was less than that in the
initial simulations and ranged from 30 to 33%.
The simulations summarized in Table 5 illustrate that

accepting a slightly greater Type 1 error of 13–14% allows the
pediatric trial sample size to be decreased by 40–44%. For all
six drugs evaluated, a 1:4 weighting of the adult prior to
pediatric trial data produced this reduction in sample size.
These simulations maintained approximately half of the
reduction in sample size achieved in the 1:1 weighted
simulations, while reducing the Type-1 error by threefold.
The results of the simulations described in Tables 3, 4, 5

depict how applying Bayesian statistics in the context of T2D

could be used to significantly reduce the sample size required
for pediatric clinical trials. If the assumption that the effect
size is the same in adults and in children is incorrect, and the
true effect size is less in children, then the power to detect the
treatment effect will be decreased. To explore this, we ran
simulations for all drugs in which the actual effect size in
children is half of the effect size in adults. Under these
conditions the original 90% power was reduced to 69–74%,
53–58%, and 48–56% for the 1:1, 1:4, and 1:5–7 simulations,
respectively. Even though the power is diminished, the power
remains greater than that with the frequentist approach. In
the case where there is no treatment effect, the probability
of erroneously concluding that there is a treatment benefit
is reflected in the Type-1 error. The Type-1 error will be
greater than the typical one-sided α= 2.5% associated with a
frequentist statistical approach because of the assumption of
benefit that is inherent in the Bayesian approach; however, the

Table 3. Results of simulations with equal weighting (1:1) of the adult prior and pediatric clinical trial

Drug Bayesian statistics Frequentist statistics Reduction in
pediatric N (%)

Type-1 error
(%)

Adult prior (N/group) Pediatric study (N/group) Pediatric study (N/group)

SLGT-2 inhibitors

Canagliflozin 8 8 35 77 34

Dapagliflozin 27 27 116 77 41

DPP-4 inhibitors

Linagliptin 9 9 36 75 39

Sitagliptin 24 24 107 78 39

GLP-1 agonists

Dulaglutide 5 5 21 76 45

Liraglutide 10 10 43 77 41

Table 4. Results of simulations with weighting of the adult prior and pediatric clinical trial to produce o10% Type-1 error

Drug Bayesian statistics Frequentist Statistics Reduction in
pediatric N (%)

Weighting (adult:pediatric) Adult prior (N/group) Pediatric study (N/group) Pediatric study (N/group)

SLGT-2 inhibitors

Canagliflozin 1:6 4 24 35 31

Dapagliflozin 1:6 13 78 116 33

DPP-4 inhibitors

Linagliptin 1:5 5 25 36 31

Sitagliptin 1:6 12 72 107 33

GLP-1 agonists

Dulaglutide 1:7 2 14 21 33

Liraglutide 1:6 5 30 43 30
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simulations illustrate how this can be limited by decreasing
the weight of the adult prior.

DISCUSSION
Regulations have resulted in an increase in pediatric research,
with the goal of including information in drug labeling to
guide physicians in providing appropriate care to pediatric
patients. However, pediatric trials for certain indications have
proven notoriously difficult to enroll, as exemplified by
pediatric T2D trials, necessitating consideration of innovative
approaches. Summarizing this predicament, one key opinion
leader has stated that “There are simply too few eligible study
subjects to be recruited by too many competing studies.” (13).
To improve the feasibility of pediatric clinical trials, we

explored the use of Bayesian statistics as an alternative to the
conventional statistical approach. FDA recently identified
pediatric diseases that have adult trial data available as ripe for
the application of Bayesian methods, which offer a means to
provide comparable information in a more timely manner
with fewer patients than are required by frequentist statistics
(18). T2D presents an ideal indication to explore this
approach, with numerous therapeutics from multiple drug
classes recently approved for treatment of adults, but with
only metformin and insulin approved for the treatment of
children. The T2D indication is particularly apt for the
investigation of Bayesian statistics because it affects adoles-
cents, but not young children for whom justification and
weighting of the adult prior would be more complex. The
clinical trial simulations we performed for six antihypergly-
cemic agents from three different drug classes demonstrate
the value that a Bayesian statistical approach could bring to
pediatric trials. We acknowledge that such approaches do not
address whether the sample size required to demonstrate
efficacy also results in a sufficient safety database. However,
alternatives to placebo-controlled trials exist for the collection
of additional safety data and in the absence of a safety signal,
all data need not necessarily be collected before licensure.

In order to utilize data from adult trials as informative prior
data for pediatric trials, it must first be determined whether it
is reasonable to assume that the adult data are relevant to the
pediatric patient population. For T2D therapies, which we
used to explore the Bayesian statistical approach, this is a
reasonable assumption because the pediatric patients are
adolescents, with similar body weights and body mass indices
as adults, and the underlying insulin resistance and
progressive β-cell deterioration make the therapeutic mechan-
isms of action equally relevant in both populations (19,20).
The supposition that adolescents and adults exhibit similar
ADME of T2D medicines is confirmed by data showing
comparable pharmacokinetic parameters in both groups
(9,23–26). It is acknowledged, however, that β-cell decline
occurs more rapidly in children, and hormonal changes
associated with puberty may exacerbate insulin resistance
(6,27,28). For these reasons, whereas the SD observed in the
adult trial was utilized for the pediatric trial simulations we
performed, it may be worthwhile to consider increasing the
SD assumed for pediatric subjects so as to be more
conservative in the assumptions. In the absence of pediatric
data to guide the determination of the SD, another possibility
may be to adjust the SD assumption based on a blinded
interim assessment made during the pediatric trial.
Notwithstanding the justification provided above for the

utilization of adult prior data, no exploration of the
application of Bayesian statistics to pediatric T2D trials would
be complete without acknowledging that pediatric trials of
some T2D drugs have failed to meet pre-specified efficacy
criteria. However, it would be incorrect to conclude on the
basis of these trials that the drugs do not work in children. A
closer examination of the pediatric and adult trials reveals
significant differences in design between them that likely
explain the seemingly disparate results. Furthermore, for each
drug tested there is evidence of a treatment effect in children,
either within the subset of treatment-naive subjects, for whom
there is not the substantial confounder of pre-trial therapy,

Table 5. Results of simulations with 1:4 weighting of the adult prior and pediatric clinical trial

Drug Bayesian statistics Frequentist statistics Reduction in
pediatric N (%)

Type-1 error
(%)

Adult prior (N/group) Pediatric study (N/group) Pediatric study (N/group)

SLGT-2 inhibitors

Canagliflozin 5 20 35 43 13.8

Dapagliflozin 17 68 116 41 12.9

DPP-4 inhibitors

Linagliptin 5 20 36 44 12.7

Sitagliptin 16 64 107 40 13.1

GLP-1 agonists

Dulaglutide 3 12 21 43 12.8

Liraglutide 6 24 43 44 12.7
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and/or from a subsequent, better-designed trial. Given the
importance to the Bayesian approach of the assumption that
the adult data are relevant for pediatric trials, additional
details regarding why some pediatric T2D trials failed to
definitively demonstrate efficacy are provided below. The
totality of the evidence is consistent with the expectation that
children respond to T2D treatments in generally the same
manner as adults, and it supports the use of informative priors
derived from the adult trials for the application of Bayesian
statistics to pediatric trials.
Christensen et al. (23) recently reviewed the pediatric drug

development programs for non-insulin T2D therapies that
have been reviewed by FDA, namely glimepiride, rosiglita-
zone, glyburide/metformin, and metformin (23). Only the
metformin program resulted in a labeled pediatric indication;
the complexities and weaknesses encountered with the other
programs are summarized here. In contrast to the adult trials,
the pediatric trials for glimepiride and rosiglitazone were
conducted as non-inferiority (NI) trials, a design that is
complicated by issues of assay sensitivity, selection of the NI
margin, and large required sample size. Both trials appear
underpowered for this analysis, which likely explains why NI
was not demonstrated (26,29). FDA’s review of glimiperide
indicates that the SD had been assumed to be 1.2%, but
proved to be ~ 2.0% in the trial, which resulted in a power of
only 40%. In addition, a significant confounder in the trials
for rosiglitazone, glimperide, and glyburide/metformin was
the inclusion of non-naive patients.
The trial of glyburide/metformin was not a NI trial (it was a

superiority trial comparing the combination with the
individual components); however, demonstration of a treat-
ment effect was significantly hampered in this trial, as well as
the trials of rosiglitazone and glimiperide, by inclusion of
non-naive patients. The duration of washout of prior therapy
was short or nonexistent in these trials for ethical reasons;
therefore, the HbA1c values measured at randomization had
not returned to pretreatment values (26,30,31). Because non-
naive patients accounted for nearly half the patients enrolled
in each of the trials, this trial design would be expected to
noticeably hinder the ability to demonstrate an impact on
HbA1c by the drug being tested. There was, however,
evidence of an impact of treatment in the naive population.
Reductions in HbA1c from baseline (mean change± SEM) for
naive and non-naive patients were − 1.35± 2.00 and − 0.09±
1.63, respectively, for glyburide/metformin, and − 0.97± 0.3
and +0.17± 0.7, respectively, for glimepiride (29,31).
Although it is not stated specifically whether the effects
on HbA1c in naive subjects were statistically significant,
presumably this is the case for glimepiride because it was able
to produce a statistically significant decrease in the combined
(naive plus non-naive) population. On the basis of this result,
the FDA reviewer concluded that “Glimepiride and metfor-
min were both effective in achieving glycemic control from
baseline to endpoint in pediatric subjects with Type-2 diabetes
mellitus.” (29) Nevertheless, the trial was considered to have
failed because the primary endpoint of NI to metformin was

not demonstrated. Of note, the glimepiride trial utilized the
most stringent HbA1c entry criteria of the three trials,
47.1%, which may also have contributed to the ability to
demonstrate a treatment effect. For glyburide/metformin, the
FDA reviewer posits that having very few patients in the
pediatric trial with baseline HbA1c 49% accounts for the
inability to detect a treatment effect because it was patients
with this level of hyperglycemia that drove the treatment
effect in the adult trial (32).
Data for non-naive patients are not available for rosiglita-

zone, but the impact of prior therapy can still be seen by
comparing the effect achieved in naive patients with that in all-
randomized patients, − 0.32± 1.64 and − 0.14± 1.52 (mean
change± SD), respectively (26). For this latter comparison the
P values were 0.1552 and 0.3629, respectively, and, although
statistical significance was not achieved, the lower P value for
naive patients was achieved despite the smaller number of
patients in the naive subgroup (55 vs. 97). It is also noteworthy
that when rosiglitazone was studied in a subsequent trial of
different design, it was shown to be effective in maintaining
glycemic control when added to metformin therapy (8).
For the three drug products described above, the weight of

evidence suggests that they are effective in children. An
evaluation of efficacy, however, is not sufficient to conclude
that drugs should be recommended treatments for children.
To make an approvability decision, a risk-benefit assessment
is also needed, which would account for any negative
consequences of treatment. For the drugs described above,
weight gain is a known treatment-related effect, and FDA
cited this as a factor in its decisions to not grant pediatric
indications for the drugs.
Having expounded on the rationale for using a Bayesian

approach that applies informative priors derived from adult
trials to pediatric trials, selection of the extent to which the
prior contributes to the posterior distribution (i.e., the weight
given to the prior) remains to be discussed. One of the
principles of Bayesian statistics is that the weight given to the
prior should correlate with the confidence in the relevance of
the prior to the new study. For our simulations we initially
used a weight of 1:1 in order to provide a point of reference,
i.e., we assumed the number of adult patients contributing to
the posterior data set was the same as the number of pediatric
patients to be enrolled in the trial. However, results from the
1:4 to 1:7 simulations provided a better balance between
the goals of reducing the trial sample size and controlling
the Type-1 error. Given that we used T2D drugs for our
simulations, selection of a weight in this range seemed
reasonable in light of the discussion above regarding the
evidence for similar effectiveness of T2D treatments in adults
and children. We would suggest that the 1:4 weighting
provides the most appropriate balance, maintaining approxi-
mately half of the reduction in sample size that was achieved
in the 1:1 weighted simulation, while reducing the Type-1
error by threefold. It is noted that the Type-1 error would be
increased if the SD in children is greater than that in the
adult prior.
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There have been other Bayesian methodologies developed,
such as the use of a normalized power prior (33,34), which
also effectively control the influence of the assumed prior on
the final analysis. This is accomplished by reducing the
magnitude of the prior function in the calculation of the
posterior distribution. Instead, we have adjusted the para-
meters of the prior directly to control the prior’s influence.
The results of our simulations, using T2D drugs as

examples, demonstrate that applying Bayesian statistics to
pediatric trials offers a means of facilitating trial completion
by reducing trial size. Inherent in the methodology is an
assumption of benefit that results in Type-1 error values
greater than those used in frequentist statistics, but this
is because the calculation of Type-1 error presumes that
the assumption of benefit is incorrect. If the assumption of
benefit is justified, then the description of Type-1 error as the
probability of a false-positive is misleading. Furthermore, the
assumption of benefit can be tempered by limiting the weight
of the adult prior. Our exploration of the application of
Bayesian methodology to pediatric research leads us to
conclude that this approach should be further investigated
as a viable means to enhance the feasibility of completing
pediatric trials that are needed to support labeling of drugs for
pediatric use.
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