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Transamniotic stem cell therapy: a novel strategy for the
prenatal management of congenital anomalies
Dario O Fauza1

Transamniotic stem cell therapy, or TRASCET, is an emerging
therapeutic concept for the management of congenital
anomalies based on the augmentation of the biological role
of select populations of stem cells that already occur in the
amniotic fluid, for targeted therapeutic benefit. Amniotic fluid-
derived mesenchymal stem cells (afMSCs) have a central role
in the enhanced ability of the fetus to repair tissue damage.
This germane recent finding constitutes the biological
foundation for the use of afMSCs in TRASCET. It has been
shown experimentally that simple intra-amniotic delivery of
afMSCs in large numbers can either elicit the repair, or
significantly mitigate the effects associated with major
congenital anomalies by boosting the activity that these cells
normally have. For example, TRASCET can induce partial or
complete coverage of experimental spina bifida by promoting
the local formation of host-derived skin, thus protecting the
spinal cord from further damage. In another example, it can
significantly alleviate the bowel damage associated with
gastroschisis, one of the most common major abdominal wall
defects. Other applications involving different congenital
anomalies and/or other stem cells present in the amniotic
fluid in diseased pregnancies are currently under investigation
in this freshly evolving facet of fetal stem cell therapy.

Transamniotic stem cell therapy (TRASCET) is a ther-
apeutic concept pertinent to fundamentally diverse birth

defects, first reported experimentally in a translational
approach only as recently as 2014 and not yet trialed
clinically as of this writing. Its biological basis is centered
on the normal role played by specific populations of stem cells
that either naturally occur in the amniotic fluid, or are present
therein during certain pathological states. The appeal and
viability of plain intra-amniotic administrations of large
concentrations of select (typically autologous) stem cells as a
means to boost the normal activity of such cells and in turn
deliver therapeutic benefit at minimal to no risk to the mother
and fetus is self-explanatory. Such a practicable intervention
would, in all likelihood, be accessible to a wide majority of
pregnant women as outpatient procedures and from an early
point in gestation, thus potentially maximizing impact. It

would also constitute an original provider-based model of
personalized perinatal stem cell processing on demand,
while further qualifying amniotic cell banking as clinically
meaningful. Although a variety of applications of this
emerging therapeutic paradigm are conceivable and, in fact,
are currently under investigation, at this time tangible
experimental reports have involved the management of neural
tube and abdominal wall defects.
Notwithstanding multiple experimental advances, plenty

promise, and perhaps undue publicity, the fact remains that
almost all new cell-based therapies suggested over the last few
decades are yet to lead to significant, widespread consequence
to patient care. Sole exceptions are the therapies based on
harnessing and/or augmenting the biological activity that
certain cells already exert in nature. Blood transfusions in
their different variations and bone marrow transplantation
are the most conspicuous examples of this premise. These
long-proven cell-based therapies have had unmatched impact
to public health, in large part owing to the fact that the cells
used are to perform the very same functions that they already
naturally do. An analogous correspondence also applies to
TRASCET, in that it, too, is based on the therapeutic
amplification of the normal biological activities of specific
cells, only prenatally and in a distinct environment.

BIOLOGICAL BASIS FOR TRASCET
A biological role for any cell present in the amniotic fluid was
first described only not long ago, namely an activity of
amniotic fluid mesenchymal stem cells (afMSCs) in fetal
wound healing (1). In sequential experiments using fetal
lambs, that study showed that, although not absolutely
required for the healing process, afMSCs do accelerate wound
repair and enrich its extracellular matrix profile (Figure 1)
(1). The mechanisms behind the fetus’ long-known highly
enhanced capacity to heal wounds remain to be fully
understood (2). Until that study, the focus of fetal wound-
healing research had solely been on the peculiarities of local
molecular pathways and gene expression patterns (3,4). That
work shed light on a thitherto overlooked endogenous cellular
constituent germane to the fetal wound-healing puzzle. Such a
finding was in line with the fact that mesenchymal stem
cells (MSCs) from other sources, particularly the bone
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marrow, are known to home in to injured sites and contribute
to tissue repair in postnatal life, as discussed elsewhere in this
volume (5–7).
The discovery that afMSCs have a role in fetal wound

healing has added a new layer to the understanding of both
fetal and postnatal tissue repair. It has also lent a biological
basis to the use of afMSCs in regenerative strategies, be it
perinatally or later in life. Indeed, ever since the first
experimental descriptions of therapeutic roles for afMSCs in
the early 2000s, there has been a plethora of reports on a
variety of potential applications for these cells, by countless
groups (8–10). Interestingly, although TRASCET is the only
one of such applications to be based on the actual biological
role of these cells, it was first proposed more than a decade
later. From a translational standpoint, afMSCs are plausibly
more relevant to the TRASCET approach than any other stem
cells, given that they are to be used in their native
environment, usually in an autologous manner, and can be
procured from minute samples obtained by one of the least
invasive of all fetal cell procurement methods—a plain
amniocentesis—which can even be already indicated for
select diagnostic purposes in mothers carrying a fetus with a
congenital anomaly. Nonetheless, fetal MSCs from other
sources, such as the placenta, can also be viable clinically and,
in fact, have already been used for TRASCET experimentally
(details below).

Disease-Associated Amniotic Stem Cells
In addition to its regular population, the amniotic fluid can
also harbor unique stem cells present only in the setting of
certain fetal diseases (11). For example, neural stem cells
(NSCs) can be isolated from the amniotic fluid in experi-
mental models of neural tube defects (NTDs)—so-called
amniotic fluid neural stem cells (afNSCs) (11). Although cells
of a neural phenotype have long been known to occur in the
amniotic fluid when a NTD is present, and in fact often
aid in the diagnosis of these anomalies, the existence of an

undifferentiated, more primitive population of neural pro-
genitor cells within the amniotic cavity was yet to be
demonstrated until that report (12–15). The presence of
afNSCs in human amniotic fluid from fetuses with NTDs
followed shortly thereafter, albeit so far only in the presence of
anencephaly (16). The fact that the amniotic fluid may be an
accessible source of (autologous) NSCs relevant to the
development of new therapies for spina bifida adds another
facet to the TRASCET concept. In addition, recent studies
suggest that this unique population of stem cells may also
have diagnostic value in the setting of congenital NTDs,
besides a potential therapeutic one (17,18). Certainly, the
perspective of other disease-associated amniotic stem cells
being eventually described, along with roles for such cells in
select clinical scenarios, is now to be expected. Still, given the
current relative paucity of data on disease-specific amniotic
fluid stem cells, this review will focus on MSC-based
TRASCET.

DONOR MSC FATE AFTER TRASCET
As discussed in other chapters, still a lot remains to be
understood about the mechanisms governing MSC trafficking
and its respective contributions to tissue reparation, restora-
tion, and inflammation (19). Expectedly, the same applies to
TRASCET. Although it is tempting to assume that donor cell-
homing simply involves direct seeding via the amniotic fluid/
cavity, engraftment patterns observed to date have been
incompatible with merely this form of cell kinetics. Indeed, it
has been recently shown that, after concentrated intra-
amniotic injection, donor afMSCs actually home robustly to
the placenta, the fetal bone marrow, and even to select sites of
maternal injury, pointing to the presence of hematogenous
donor cell routing (20,21).
The homing of donor afMSCs to the fetal bone marrow is of

particular significance, in that, from there, donor MSCs can
reach virtually any area of the body/fetus, much like bone
marrow MSCs in postnatal life, thus significantly expanding
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Figure 1. Representative gross views of two sets of fetal wounds, each set from the same fetal lamb, 9 (top) and 20 (bottom) days after their
creation, illustrating evident differences in healing rate. The excerpted wounds on the left were exposed to amniotic fluid cells, whereas those on the
right were not. The micrograph shows a fetal wound (within the dotted lines) populated by labeled autologous amniotic mesenchymal stem cells
identified by monoclonal anti-GFP immunohistochemistry (arrows; original magnification × 400). GFP, green fluorescent protein.
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potential therapeutic applications of TRASCET well beyond
only exposed structural congenital anomalies, as initially
studied. The fetal bone marrow is a shifting microenviron-
ment containing two major distinct multipotent cell popula-
tions, hematopoietic stem cells (HSCs), and MSCs. Both these
cell types develop within different hematopoietic sites
throughout ontogeny, suggesting a close interplay between
the two systems (22). Exogenous HSC and MSC engraftment
to the fetal bone marrow has long been reported after
administration of these cells through the placenta, intrave-
nously in the developing embryo or fetus, or intraperitoneally
in the fetus (23). To my knowledge, fetal bone marrow
engraftment of donor MSCs after plain delivery into the
amniotic cavity was yet to be described until these recent
studies. The chronology of placental cell trafficking noticed in
the rodent model, with bimodal peaks soon after injection and
at term, is suggestive of controlled cell routing, rather than
passive cell clearance (21,24). Besides the point of exogenous
administration, the homing of HSC and MSC donor cells to
the fetal bone marrow is thought to be affected by the
predictable spatiotemporal and quantitative development of
prenatal hematopoiesis, with sequential overlaps at different
anatomical sites. In murine models, these sites include the
yolk sac, aorta–gonad mesonephros region, placenta, fetal
liver, fetal spleen, and ultimately the fetal bone marrow (25–
27). Donor HSCs are known to join host HSCs in their
normal migratory pattern in the fetus (28). This phenomenon
could, perhaps, also apply to MSCs, which, in turn, would
suggest the intriguing possibility that amniotic fluid, placental,
umbilical, and fetal bone marrow MSCs are all actually
compartments of the same overarching cell pool. Of course,
that remains to be definitively determined. Moreover, in light
of the close relationship between HSCs and MSCs, the
presence of donor MSCs in the fetal bone marrow after
TRASCET submits the possibility that the amniotic cavity
could also be a practical route of administration of HSCs and
possibly even other donor cells for therapeutic purposes,
although of course this is purely speculative at this time.
Further scrutiny on these perspectives is ongoing.
It remains to be determined how long donor afMSCs that

home to the mother remain viable. Yet, given the potential for
both beneficial and harmful effects from fetal microchimerism
in the maternal circulation, such an aspect of donor cell
homing must be included in TRASCET counseling, should it
become clinical reality.

TRASCET APPLICATIONS
Currently, the United States has ~ 4 million live births per
year. Congenital anomalies are stably present in 3–4% of all
newborns (29–31). Those diseases are responsible for ~ 20%
of deaths occurring in the neonatal period and even higher
morbidity rates during childhood (31,32). The biological
basis, timing, practicality, accessibility and ethically unobjec-
tionable nature of TRASCET all support the perspective that
it could have a significant impact in the perinatal manage-
ment of a variety of diseases. Yet, having been described

exceedingly recently, plausibly to date only a few applications
of this original paradigm have been examined in enough
detail to justify a more elaborate review here, which will
follow.

TRASCET FOR NTDS
NTDs derive from the failure of the neural tube to close by the
fourth week of embryonic development. They are generally
classified as open or closed, depending on the presence or
absence of exposed neural tissue, respectively. They may affect
any portion of the brain and/or spinal cord. In the vast
majority of cases, isolated NTDs are multifactorial in
inheritance (33). At the same time, folic acid deficiency is
known to be at least a contributory factor (34). The risk of
NTDs can be reduced by as much as 50–70% by folic acid
supplementation during the first trimester of gestation
(35,36). Yet, despite mandatory folate supplementation in
all cereal grain products, the overall incidence of spina bifida
in the United States has remained fairly stable in the last
several censuses, at 3–4:10,000 live births (30,37).
Spina bifida is the most common survivable NTD. It results

in both primary and secondary spinal cord damage. The
former involves abnormal spinal cord development accom-
panying incomplete closure of the neural tube, whereas the
latter stems from chemical and mechanical insults to the
spinal cord openly exposed to the amniotic fluid and trauma.
Several studies indicate that the secondary mechanisms are
the most relevant clinically (38–48). In fact, the major
morbidity associated with spina bifida has prompted the first
ever prospective randomized control trial of fetal surgical
treatment for a non-life-threatening congenital anomaly—the
Management of Myelomeningocele Study— a multicentric
trial funded by the National Institutes of Health (49). This
landmark endeavor further validated years of research
pointing to the major clinical impact of secondary mechan-
isms of spinal cord damage in this disease and showed that
prenatal coverage of the lesion, although not curative, can
improve outcome when compared with conventional post-
natal repair, albeit only in a limited subset of maternal–fetal
units (49). Another shortcoming of surgical repair is the fact
that it can only be safely performed no earlier than the second
half of the pregnancy and in a relatively short time window.
This is already rather late into the pathophysiological process
in NTDs, which, as mentioned above, starts by the fourth
week of gestation. Further, fetal surgery is not without
significant maternal and fetal risks, most notably prematurity
from preterm labor. To this day, it is fair to say that, overall,
the benefits of both pre- and postnatal interventions for spina
bifida remain relatively modest. Current treatment protocols
are basically supportive and target no more than minimizing
additional central nervous system damage. Lifelong assistance,
rehabilitation, and variable degrees of institutionalization
remain the norm. In order to be more effective, new
therapeutic strategies should entail accessibility to a much
larger proportion of patients, feasibility early in gestation, and
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be minimally invasive, ideally promoting local regeneration.
The TRASCET approach meets such requirements.

Amniotic MSCs
In three consecutive studies published as of this writing,
TRASCET had some beneficial impact in a rodent model of
spina bifida (50–52). All these experiments utilized time-
dated pregnant rat dams exposed to retinoic acid at a specific
time of gestation for the induction of fetal NTD, an elegant
model widely used by many groups (53). Although there were
no significant differences in the overall dimensions of the
spina bifida defect across controls, sham-treated animals and
animals treated with TRASCET, fetuses in the latter group
were significantly more likely to develop variable degrees of
coverage of the defect, some complete, by a primitive form of
skin lacking adnexa, documented histologically (Figure 2)
(50). Labeled donor cells were identified in that group,
interestingly not populating that neoskin, but rather pre-
ferably engrafting to the bone in the vicinity of the defect.
Such an engraftment pattern is suggestive of two possibly
complementary scenarios. One is that, also in the setting
of spina bifida, donor cells may home to the fetal bone
marrow—this is currently under focused investigation in this
model. Another is that a paracrine effect may be at play.
The impact of TRASCET on the Chiari-II malformation

associated with spina bifida was also studied in this model
(51). Analyses included magnetic resonance imaging with a
high resolution (submillimeter) scanner and histology. The
Chiari-II malformation was assessed on magnetic resonance
imaging using computer-generated specific angular and linear
measurements of brainstem and cerebellar placement in
relation to the baso-occipital bone and the base of the skull,
respectively. Overall, there were statistically significant
differences across the groups in linear and angular measure-
ments of brainstem placement, with the untreated group
displaying the highest degree of caudal displacement.

Essentially, it was shown that induced coverage of spina
bifida defect by concentrated intra-amniotic delivery of
afMSCs also minimizes the Chiari-II malformation in the
rodent model. Although the Chiari-II was not completely
reversed, these results suggested that, much like surgical/
mechanical repair, TRASCET can lessen this complication by
decreasing the leakage of cerebrospinal fluid through the
defect, as it became partly or totally covered, only non-
surgically.
In another study using the same model, the rates of either

partial or complete coverage of the spina bifida defect were
similar between groups treated with either afMSCs or
placental MSCs for TRASCET (52). Notably, in that study,
some percentage of coverage was also noticed in the untreated
group, although quite limited and none complete. This
finding supports the notion that the inherent biological
activity of afMSCs constitutes a central underlying mechan-
ism of defect coverage triggered by TRASCET, which may
simply represent an augmentation of such activity via the
large number of cells delivered. In fact, recent studies suggest
that afMSCs may actually be consumed in the presence of
NTDs (17,18). Although the ontogeny of afMSCs and
placental MSCs remain to be fully elucidated, there is
evidence that they actually could be the same cell, possibly
with normal traffic between the amniotic and placental
compartments (54–56). Should this ever be definitively
confirmed, it could explain the lack of difference in their
effects as agents of TRASCET in that model, as well as the
robust homing of donor afMSCs to the placenta during
TRASCET, as previously discussed. At the same time,
chorionic villus sampling is viable earlier in gestation than
amniocentesis is, and, thus, in principle, could allow for the
initiation of TRASCET correspondingly earlier than an
afMSC-based treatment. Nevertheless, almost always the
diagnosis of spina bifida is confirmed only at a time when
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Figure 2. Gross views of spina bifida defects in term fetal rats at the time of killing. (a,b) Typical appearance from untreated and sham animals; (c,d)
appearance found in some animals that received TRASCET, in which the defect appeared covered (dotted perimeters). The micrographs are from
some of the TRASCET animals, showing the typical widely open vertebral arches, the spinal cord variably deformed, and coverage of the defect by a
rudimentary skin with a paucity of adnexa (dotted perimeters; H&E, original magnification × 200). H&E, hemotoxylin and eosin; TRASCET,
Transamniotic stem cell therapy.
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amniocentesis is already feasible and safer than chorionic
villus sampling.
Although the mechanisms behind these findings remain to

be determined, together all these data lend support to
TRASCET as a potential alternative or at least adjuvant in
the prenatal management of spina bifida. An arguably
comparable closure of experimental spina bifida via intra-
amniotic cell injections had been previously described,
although only in avian eggs ex vivo and using either
embryonic stem cells, or purportedly “bone marrow stem
cells” (57–59). The rodent studies previously discussed
constituted the first reports in vivo, in a mammal and using
fetal cells, with a translational perspective. From a clinical
standpoint, afMSCs seem considerably more suitable than
bone marrow or embryonic stem cells. For one, bone marrow
cells, particularly autologous, would only be obtainable by
much more invasive methods than a simple amniocentesis. In
addition, they are yet to be shown to contribute to the
biological phenomena involved. As to embryonic stem cells,
should they be at all effective in this setting in vivo, there are
still too many biological, logistical, and ethical limitations to
their use. Of note, time is a core limiting factor in the rodent
model. Rat pregnancy is quite short (term= 22 days) and
intra-amniotic injections followed by high survival rates have
been feasible only on gestational day 17, which means less
than a week between treatment and killing. One could
reasonably speculate that the effects of the cell administrations
could have been more pronounced, should it be possible to
inject them earlier and/or repeatedly. Studies on larger animal
models, currently ongoing, should help clarify this.

Amniotic Neural Stem Cells
Given the previously mentioned occurrence of afNSCs within
the amniotic fluid in the presence of NTDs, these stem cells
are also natural candidates for the TRASCET approach.
Indeed, it has been shown that simple intra-amniotic injection
of expanded afNSCs in rodent fetuses with spina bifida results
in both the surface and deeper portions of the exposed spinal
cord becoming selectively populated by these cells (60).
However, it remains to be determined whether donor afNSCs
delivered in this manner can promote any degree of
meaningful neural tissue repair. Plausibly, autologous afNSCs
could be procured by amniocenteses from fetuses with spina
bifida, expanded ex vivo, and injected back into the amniotic
fluid one or more times as a component of a broader
TRASCET strategy to be combined with induced coverage of
the defect with afMSCs or placental MSCs.

TRASCET FOR ABDOMINAL WALL DEFECTS
The combined incidence of congenital abdominal wall defects
is ~ 1 in 2,100 live births, placing them among the most
prevalent major congenital anomalies (29,30). By far, the two
most common forms of these diseases are omphalocele and
gastroschisis, whose etiologies remain unknown. Although
omphalocele is still the most common condition, the
incidence of gastroschisis seems to be rising, whereas that of

omphalocele has remained stable. Both defects consist of an
abnormal opening of the abdominal wall at its anterior aspect.
In gastroschisis, such an opening is characteristically to the
right of the umbilicus and quite small, although enough to
allow for typically a large volume of eviscerated structures. In
omphalocele, the opening is at the very site of the umbilical
ring, therefore always central, and can vary broadly in size.
Although in omphalocele the eviscerated contents are covered
by a sac composed of peritoneum, Wharton’s jelly, and
amnion, in gastroschisis that content is entirely exposed to the
amniotic fluid/cavity, which ordinarily leads to extensive local
chemical insult and more vulnerability to trauma. Hence,
gastroschisis is associated with considerably more damage of
the herniated structures when compared with omphalocele.
This is particularly more pronounced in the small and large
intestines, which are almost invariably herniated. The exposed
bowel is grossly abnormal, edematous, inflamed, leathery, and
foreshortened. On histology, all of its layers are noticeably
thickened, with variable degrees of amniotic peritonitis
present. This can be further compounded by constriction of
the anomalous abdominal opening, leading to bowel ischemia
and/or congestion and, in more severe cases, strangulation
and/or atresia. Surely, clinically relevant functional conse-
quences of such significant structural changes are to be
expected. Indeed, impaired peristalsis and a very slow
recovery of proper gastrointestinal function are virtually
always present. The undue exposure of the bowel to the
amniotic fluid, combined with local circulatory changes, have
long been established as the foremost mechanisms behind the
significant intestinal damage observed in gastroschisis (and in
ruptured omphaloceles) (61,62). A direct correlation between
the intensities of the structural damage and of the functional
and clinical manifestations has also been well documented
(63).
Congenital abdominal wall defects are routinely diagnosed

before birth with fetal ultrasound, not infrequently already in
the first trimester. The distinction between omphalocele and
gastroschisis is usually straightforward. Despite the relative
ease in an early diagnosis, the prenatal management of these
anomalies remains restricted to counseling as to the timing
and type of delivery to be performed. An actual therapeutic
intervention directly aimed at improving the intestinal
damage and function is yet to be widely adopted. To date,
either clinically or mostly only experimentally, a number of
prenatal strategies have been proposed, such as amnio-
exchange, amniotic fluid dilution, prenatal steroid adminis-
tration, induced fetal diuresis, nitric oxide donors, and even
intra-uterine repair of the defect, all with quite modest results
and some risks (64–68).
Two recent experimental reports on afMSC-based TRAS-

CET for gastroschisis in rodent and leporine models were the
first to propose a cell-based approach to the prenatal
management of abdominal wall defects (69,70). In both those
studies, a gastroschisis was surgically created in either rat or
rabbit fetuses. Animals were then divided into the following
three groups: one with no further manipulations and two
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receiving volume-matched intra-amniotic injections of either
saline or a concentrated suspension of afMSCs at the time of
operation. Non-manipulated fetuses served as normal con-
trols. In both models, among survivors with gastroschisis
there were statistically significant decreases in total bowel
wall, serosal, muscular, and mucosal thicknesses—long
established surrogates for bowel damage in this disease—in
the afMSC group vs. the untreated and saline groups,
although the bowel was not entirely normal in the TRASCET
groups (Figure 3). Donor cell engraftment seemed somewhat
sparse, suggesting a paracrine effect also here, although the
fact that the donor cells had to be delivered concomitantly
with the creation of the defect in these models, and therefore,
before any actual bowel damage had ensued, could have

contributed to this observation as well. Uncovering the
mechanisms behind the mitigation of intestinal damage
promoted by the afMSCs in that setting was beyond the
scope of introductory studies such as these, yet surely this
pursuit is now warranted. An eventual understanding of such
mechanisms should not only enhance the translational
prospects for this particular application of TRASCET, but
also have an impact on other forms of cell-mediated intestinal
repair.

REGULATORY DEMANDS AND FUTURE DEVELOPMENT
Although the TRASCET approach as a treatment strategy is
novel, native afMSCs have been utilized therapeutically in a
multitude of animal models for almost two decades now, with
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Figure 3. Representative gross views of term rat fetuses with gastroschisis. The exposed intestine in the (a) untreated and (b) saline groups
appeared heterogeneous, edematous, and thickened. The intestine in the (c) TRASCET group seemed less affected. This was confirmed by multiple
histological measurements of bowel wall thickness (graph), showing the mean total and segmental thicknesses of the intestinal wall compared across
the groups. There were significant decreases in serosal, muscular, and mucosal layer thicknesses and in total bowel wall thickness in the TRASCET
group vs. the untreated and saline groups. There were no such differences between the untreated and saline groups. There were no differences
between the TRASCET group and normal controls, except for a significantly thicker muscular layer in the former. TRASCET, Transamniotic stem cell
therapy.
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no tumor or any other ill effects having been identified to
date. Compared with embryonic stem cells, afMSCs are not
nearly as primitive and have been shown to be genetically and
phenotypically stable under extensive cell processing per-
formed in compliance with clinically suitable Food and Drug
Administration guidelines (71,72). Further, afMSCs have been
shown to be expandable in culture significantly faster than
other MSCs of indistinguishable phenotype, when grown
under identical conditions in vitro (56). For example, a
3–5 ml aliquot of amniotic fluid obtainable during amnio-
centesis is all that would be needed for hundreds of millions
of cells to be generated in 3–4 weeks’ time (71,72). Such a
robust and stable proliferation capacity, combined with the
fact that TRASCET is based on the use of afMSCs in their
native, undifferentiated state, without (the need for) any
added manipulation, after administration as plain cell
suspensions into the very environment from which they are
derived, further underscore the operability and potential
scope of the TRASCET principle.
Further work in larger animals would of course be of

relevance to eventual clinical translation. The extent and
pattern of therapeutic benefit in larger models (and in
humans) is expected to be dependable to variables such as
density and volume of the cell suspension, timing and number
of doses injected, and possibly also eventual targeted
enhancements of the donor cells in vitro before delivery
in vivo. For example, a potential benefit to pre-selecting c-kit-
positive donor cells could be uncovered, among other
foreseeable strategies. Data on the long-term fate of donor
cells, along with mechanistic insights are needed. Such
foreseeable developments notwithstanding, the results
reported to date, combined with the biological basis for
TRASCET, substantiate the expectation that it may become a
practical, accessible, minimally invasive constituent of original
regenerative strategies for the prenatal management of
different birth defects.
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