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RSV vs. rhinovirus bronchiolitis: difference in nasal airway
microRNA profiles and NFκB signaling
Kohei Hasegawa1, Marcos Pérez-Losada2, Claire E. Hoptay3, Samuel Epstein3, Jonathan M. Mansbach4, Stephen J. Teach5,
Pedro A. Piedra6, Carlos A. Camargo Jr1 and Robert J. Freishtat7

BACKGROUND: Although rhinovirus infection is associated
with increased risks of acute and chronic respiratory outcomes
during childhood compared with respiratory syncytial virus
(RSV), the underlying mechanisms remain unclear. We aimed
to determine the differences in nasal airway microRNA profiles
and their downstream effects between infants with rhinovirus
and RSV bronchiolitis.
METHODS: As part of a multicenter cohort study of infants
hospitalized for bronchiolitis, we examined nasal samples
obtained from 16 infants with rhinovirus and 16 infants with
RSV. We tested nasal airway samples using microarrays to
profile global microRNA expression and determine the
predicted regulation of targeted transcripts. We also measured
gene expression and cytokines for NFκB pathway
components.
RESULTS: Between the virus groups, 386 microRNAs were
differentially expressed (false discovery rate (FDR)o0.05). In
infants with rhinovirus, the NFκB pathway was highly ranked
as a predicted target for these differentially expressed
microRNAs compared with RSV. Pathway analysis using
measured mRNA expression data validated that rhinovirus
infection had upregulation of NFκB family (RelA and NFκB2)
and downregulation of inhibitor κB family. Infants with
rhinovirus had higher levels of NFκB-induced type-2 cytokines
(IL-10 and IL-13; FDRo0.01).
CONCLUSION: In infants with bronchiolitis, rhinovirus and
RSV infections had different nasal airway microRNA profiles
associated with NFκB signaling.

Bronchiolitis is an important public health problem in the
United States (1). Indeed, bronchiolitis is the leading

cause of hospitalizations for US infants, with ~ 130,000
hospitalizations each year (1). In addition to this acute
morbidity, bronchiolitis has associated chronic morbidity;
30–40% of infants hospitalized with bronchiolitis develop

childhood asthma (2). Analyses of the two major causative
viruses (rhinovirus and respiratory syncytial virus (RSV))
suggest that rhinovirus infection is associated with distinct
host immune response profiles (3), and with different risks of
acute (e.g., bronchiolitis severity) and chronic (e.g., incident
asthma) respiratory outcomes during childhood when
compared to RSV infection (2). Although these studies
suggest that respiratory virus infection and airway immune
response modulation are associated with respiratory outcomes
in infants with bronchiolitis, the underlying mechanisms of
these links remain unclear (4).
The recent discovery of interactions between innate and

adaptive immune responses in the airway is beginning to
reveal potential mechanisms—e.g., viral-induced program-
ming of airway immune response via epigenetic changes
involving microRNAs (5). MicroRNAs comprise a large
family of highly conserved, non-coding, short, single-
stranded RNAs that regulate ~ 60% of protein-encoding genes
via promoting mRNA degradation or inhibiting translation
(6). Although the literature remain sparse, we recently
demonstrated that rhinovirus infection elicits expression of
specific microRNAs (e.g., miR-155) in the nasal airway of
young children (7). In addition, studies have reported that
rhinovirus infection not only activates NFκB signaling
pathway (8–11), but also subsequently induces airway
hyperreactivity (12). No prior study, however, has compared
the microRNA profiles and their downstream signaling
pathways between the two major respiratory viruses—
rhinovirus and RSV—in children.
To address this knowledge gap, we examined infants

hospitalized for bronchiolitis enrolled into a multicenter
cohort study to determine the differences in the nasal airway
microRNA profiles and their downstream effects (gene and
cytokine expression) between rhinovirus and RSV infections.
Specifically, we hypothesized that, compared with RSV
infections, rhinovirus infections would be associated with
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distinctive microRNA signatures that upregulate NFκB
signaling in the nasal airway of infants with bronchiolitis.

METHODS
Study Design, Setting, and Participants
We analyzed data from an ongoing multicenter prospective cohort
study of infants (age o1 year) with severe bronchiolitis—the 35th
Multicenter Airway Research Collaboration (MARC-35) (13–17).
MARC-35 is coordinated by the Emergency Medicine Network
(EMNet), a collaboration of 245 participating hospitals. Using a
standardized protocol, site investigators at 17 sites across 14 US
states enrolled 1,016 infants hospitalized with an attending
physician’s diagnosis of bronchiolitis during three consecutive
bronchiolitis seasons from 1 November 2011 to 30 April 2014.
Bronchiolitis was defined by the American Academy of Pediatrics
guidelines: acute respiratory illness with some combination of
rhinitis, cough, tachypnea, wheezing, crackles, and retractions (18).
We excluded infants with known heart–lung disease, immunodefi-
ciency, immunosuppression, or gestational age o32 weeks, those
who were transferred to a participating hospital 424 h after the
original hospitalization, or those who were consented 424 h after
hospitalization. All patients were treated at the discretion of the
treating physicians. The institutional review board at each of the
participating hospitals approved the study. Written informed
consent was obtained from the parent or guardian.
In the present study, we randomly selected 16 infants with sole

rhinovirus infection and 16 infants with sole RSV infection (i.e., no
co-infecting viruses) from the MARC-35 cohort, and investigated
global microRNA and mRNA expression as well as cytokine levels in
the nasal airway.

Data Collection
At the index hospitalization, site investigators conducted a structured
interview that assessed patients’ demographic characteristics, medical
and family history, and details of the acute illness. Emergency
department and hospital chart reviews provided further clinical data,
such as vital signs, physical examination, medical management, and
disposition. Review of medical records was performed, after
successful completion of training (lecture, practice charts), by
board-certified physicians (e.g., from pediatric pulmonary, allergy/
immunology). All data were reviewed at the EMNet Coordinating
Center at Massachusetts General Hospital (Boston, MA), and site
investigators were queried about missing data and discrepancies
identified by manual data checks.
On the basis of evidence that nasal airway inflammatory response

is indicative of that in the lower respiratory tract (19–21), we
investigated nasal airway specimens. Trained investigators collected
nasal swabs from the anterior nares, using a standardized protocol
(22), within 24 h of hospitalization. Both nares were swabbed with a
single nylon, pediatric FLOQSwab (Copan, Brescia, Italy). Nasal
airway specimens were tested for (1) respiratory viruses, including
rhinovirus and RSV, using real-time polymerase chain reaction
(PCR) assays, (2) microRNA expression, and (3) mRNA expression,
as well as (4) cytokine levels.

RNA Extraction and MicroRNA Microarray
Total RNA from the nasal airway specimens was isolated using a
Norgen RNA/DNA Purification Kit (Norgen Biotek, Thorold, ON,
Canada) and amplified using a Seramir Exosome RNA Amplification
Kit (System Biosciences, Palo Alto, CA). MicroRNA quality was
determined by Nanodrop1000 (Thermo Scientific, Wilmington, DE)
with absorbance ratios for UV 260/280 ≥ 2.0 and 260/230 between
1.8 and 2.2. Those samples meeting quality control criteria were
hybridized to Affymetrix GeneChip microRNA 4.0 arrays (Affyme-
trix, Santa Clara, CA). Resulting data were analyzed in Expression
Console using RMA+DMBG (Affymetrix), then exported to Partek
Genomics Suite (Partek, St. Louis, MO) for the analyses.

mRNA Measurement
Although NFκB measurements are typically performed in cell-based
systems with reporter constructs (23), the MARC-35 nasal swab
specimens were not cell-based, and thus required a different
approach. For these specimens, we measured mRNAs and cytokines
not only for the components of NFκB signaling pathway, but also for
inflammatory mediators reliably induced by NFκB as an indirect
measure of NFκB activity (24–26).
To test the changes in NFκB signaling-related mRNAs as a result

of nasal airway microRNA differences, we first prepared cDNA from
the RNA extracted from the nasal airway specimens and preampli-
fied the NFκB-specific genes by using the RT2 PreAMP cDNA
Synthesis Kit (Qiagen, Valencia, CA). The preamplified cDNA was
input into the RT2 Profiler™ PCR Array for Human NFκB Signaling
Pathway (Qiagen), a qRT-PCR array that allows for the simultaneous
mRNA profiling of 84 genes related to NFκB signaling, in addition to
housekeeping genes. An array for each case was run on an ABI
7900HT Fast Real-Time PCR System (Applied BioSystems, Carlsbad,
CA) and data were analyzed using the RT2 Profiler PCR Array Data
Analysis software, version 3.5 (Qiagen).

Cytokine Measurement
To test the differences in 10 NFκB signaling-related cytokine
expressions (GM-CSF, IFNγ, IL-1β, IL-2, IL-6, IL-7, IL-8, IL-10,
IL-13, and TNFα) between the two virus groups, we tested nasal
airway specimen supernatants using the Milliplex MAP Human High
Sensitivity T-cell Panel Premixed magnetic bead-based assay (EMD
Millipore, Billerica, MA) on the MAGPIX System (EMD Millipore).
Data were analyzed using the Milliplex Analyst 5.1 software (EMD
Millipore).

Statistical Analyses
All nasal airway samples passed quality control tests and were used
for the microRNA analysis. Processed microRNA data were
normalized using generalized log non-linear transformations.
Differences in the microRNA expression profiles between rhinovirus
and RSV groups were examined using principal coordinates analysis
(PCoA) with the Bray–Curtis distance, as well as unsupervised
hierarchical clustering using Spearman’s rank correlation similarity
and the Ward’s algorithm. Benjamini–Hochberg false discovery rate
(FDR) multiple test correction was applied. Both analyses were
carried out in RStudio (RStudio, Boston, MA).
To identify microRNAs and mRNAs that are differentially

expressed between the two virus groups, we performed analysis of
variance in Partek Genomics Suite version 6.6 (Partek, St. Louis,
MO). Next, to investigate the cumulative effects of microRNAs on
the gene expression regulation among infants with rhinovirus
infection (in comparison to those with RSV), we uploaded the
differentially expressed microRNAs into Ingenuity Pathway Analysis
(IPA). We carried all microRNAs that had a Po0.10 and a fold
difference of 44.0 cutoff into the IPA analysis. Targets of
microRNAs were determined using the IPA microRNA Target
Filter, which identifies experimentally validated microRNA–mRNA
interactions from TarBase, miRecords, and biomedical literature, and
predicted microRNA–mRNA interactions from TargetScan. We used
a conservative filter, using only experimentally validated and highly
conserved predicted mRNA targets for each microRNA. We used
these mRNA targets in the Core Pathway Analyses, which identified
relationships among the mRNAs in our data set. Canonical
pathways, novel networks, and common upstream regulators were
then queried for overlap with our differentially expressed microRNA
gene target list. Last, we compared the difference in pathway
enrichment between the virus groups using the Benjamini–Hochberg
FDR multiple test correction.
In addition to the IPA analysis, we also used miRTarVis (27) to

visualize the microRNA–target mRNA expression interaction net-
work. This bioinformatic approach integrates microRNA and mRNA
expression profiles, and predicts targets of microRNA by adopting
Bayesian inference, MINE analyses, conventional correlation, and
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mutual information analyses. Lastly, to examine the downstream
effect of microRNAs, we used the Mann–Whitney U-test to
determine differences in the NFκB signaling-related cytokine levels
between the virus groups.

RESULTS
Study Population
As a part of an ongoing multicenter prospective cohort study,
we examined nasal airway samples from 16 infants with
rhinovirus bronchiolitis and 16 infants with RSV bronchio-
litis. In the current investigation, the analytic and nonanalytic
cohorts had no significant differences in most patient
characteristics (P40.05; Supplementary Table S1 online),
except the analytic cohort, which had a relatively higher
proportion of hypoxemia upon presentation (P= 0.02). Of 32
infants in the analytic cohort, the median age was 3 months
(interquartile range, 2–7 months), 69% were male, and 50%
were non-Hispanic white. Between the virus groups, there
were no significant differences in the baseline patient
characteristics, clinical presentation, or hospitalization course
(all P40.10; Table 1).

Nasal Airway MicroRNA Expression Profile Differs by Infecting
Virus
The analysis of global microRNA expression identified 2,758
microRNAs in the nasal airway of infants hospitalized for
bronchiolitis. Of these microRNAs, 386 were differentially
expressed between the two virus groups (Po0.05 with FDR
correction). In the PCoA plot (Figure 1), the microRNA
expression profiles almost completely separated infants with
rhinovirus bronchiolitis from those with RSV bronchiolitis.
Similarly, the unsupervised hierarchical clustering segregated
most patients from each viral group (Figure 2).

Infants with Rhinovirus Bronchiolitis had Specific Nasal Airway
MicroRNA Signature that Enhances NFκB Signaling Pathway
To investigate the cumulative effects of virus-specific micro-
RNA profiles on gene expression, the differentially expressed
microRNAs were used for IPA analysis. As hypothesized a
priori, the NFκB pathway was highly ranked as a predicted
target for these differentially expressed microRNAs
(Po0.0001 with FDR correction; Supplementary Table S2
online). Of 180 genes in the NFκB pathway, 137 genes were
predicted to be targeted by these microRNAs. As shown in
Figure 3a, infants with rhinovirus bronchiolitis had predicted
downregulation of the inhibitor κB (IκB) family, the major
inhibitory proteins of the NFκB signaling pathway, when
compared with infants with RSV bronchiolitis. To validate
our inference of the microRNAs’ cumulative effects on the
NFκB signaling pathway, we also measured the global
expression of 84 genes related to NFκB signaling in the
nasal airway. Consistent with the predicted regulation of
NFκB signaling pathway, the pathway analysis using the
measured mRNA expression data (Figure 3b) also
demonstrated that infants with rhinovirus bronchiolitis had
downregulation of IκB. In contrast, these infants had

upregulation of RelA (p65) and NFκB2 (p100/p52)—
proteins in the NFκB family.
Likewise, the integrated analysis of microRNA and mRNA

expression with the use of miRTarVis demonstrated consis-
tent findings (Figure 4a,b). For example, infants with
rhinovirus bronchiolitis had upregulation of multiple
microRNAs that downregulate expression of NFKBIB (the
gene encoding IκB-β)—e.g., hsa-miR-149-3p (4.2-fold
increase; Po0.001), hsa-miR-197-3p (5.5-fold increase;
Po0.001), hsa-miR-197-5p (4.3-fold increase; Po0.001),
and hsa-miR-296-3p (5.3-fold increase; Po0.001)—when
compared to infants with RSV infection (Figure 4a and
Supplementary Table S3 online). Similarly, infants with
rhinovirus had upregulation of microRNAs targeting another
IκB family gene, NFKBIE—e.g., hsa-miR-149-3p (4.2-fold
increase; Po0.001) and hsa-miR-504-3p (4.1-fold increase;
Po0.001). Last, in these patients, hsa-miR-155-5p expression
was also upregulated (4.3-fold increase; Po0.001). By
contrast, infants with rhinovirus infection had downregula-
tion of many microRNAs targeting RELA, the gene encoding
RelA, when compared to infants with RSV infection
(Figure 4b and Supplementary Table S3 online). Likewise,
these infants had downregulation of multiple microRNAs
targeting FOS, expression of which is known to be
upregulated by the NFκB pathway in conjunction with the
extracellular signal-regulated kinase pathway (28,29).
We also measured ten NFκB-regulated cytokines in the

nasal airway. Infants with rhinovirus bronchiolitis had higher
levels of IL-10 and IL-13 compared with those infants with
RSV bronchiolitis (both Po0.05 with FDR correction;
Supplementary Table S4 online). The production of IL-10
and IL-13 is known to be induced by the NFκB signaling
pathway (30,31).

DISCUSSION
In this analysis of the data from an ongoing multicenter
cohort of infants with bronchiolitis, we found that the nasal
airway microRNA profiles differ between infants infected with
rhinovirus and RSV. We also found that infants with
rhinovirus infection had an altered microRNA profile that is
predicted to greatly enhance the NFκB signaling pathway
when compared to infants with RSV infection. This finding
was mirrored by the observations that the rhinovirus-related
microRNA signature is associated with measured down-
regulation of IκB family genes and upregulation of NFκB
genes. Consistent with the literature (32), infants with
rhinovirus infection had higher levels of NFκB-induced
type-2 cytokines (IL-10 and IL-13) in comparison to those
with RSV infection. To the best of our knowledge, this is the
first investigation to have examined the difference in
microRNA signatures between rhinovirus and RSV and its
downstream effects in the setting of severe viral respiratory
infection.
The literature indicates that microRNAs help maintain the

normal development of the airways and lung in infancy, and
throughout childhood help fine-tune airway inflammatory
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Table 1. Characteristics and clinical presentation of infants hospitalized for bronchiolitis by associated viral infection

Variables Rhinovirus RSV P-value

n=16 n=16

Baseline characteristics

Age (month) 0.91

o2 4 (25) 5 (31)

2–5.9 7 (44) 6 (38)

6–12 5 (31) 5 (31)

Male sex 13 (81) 9 (56) 0.13

Race/ethnicity 0.51

Non-Hispanic white 6 (38) 10 (63)

Non-Hispanic black 4 (25) 3 (19)

Hispanic 5 (31) 3 (19)

Other 1 (6) 0 (0)

Parental history of asthma 6 (38) 3 (19) 0.43

Maternal smoking during pregnancy 2 (13) 2 (13) 0.99

Mode of birth 0.26

Vaginal birth 9 (56) 12 (75)

C-section 7 (44) 4 (25)

Prematurity (gestational age, 32–37 weeks) 5 (31) 3 (19) 0.69

Previous breathing problems before the index
hospitalizationa

5 (31) 4 (25) 0.99

History of eczema 2 (13) 4 (25) 0.65

Ever attended daycare 4 (25) 4 (25) 0.99

Aeroallergen sensitizationb 0 (0) 0 (0) —

Food sensitizationb 5 (31) 1 (6) 0.17

Other children at home 14 (88) 11 (69) 0.39

Mostly breastfed for the first 3 months of age 11 (69) 10 (63) 0.71

Smoke exposure at home 3 (19) 1 (6) 0.60

Antibiotic use before index hospitalization 7 (44) 4 (25) 0.26

Corticosteroid use before index hospitalization 5 (31) 2 (13) 0.39

Clinical presentation

Duration of breathing problem before the
index hospitalization (day), median (IQR)

3 (1–11) 3 (3–5) 0.78

Weight at presentation (kg), median (IQR) 7.3 (5.0–8.2) 6.2 (4.8–6.8) 0.29

Respiratory rate at presentation (per minute),
median (IQR)

48 (40–61) 44 (34–65) 0.63

Oxygen saturation at presentation 0.87

o90% 4 (25) 3 (19)

90–93% 2 (13) 1 (6)

≥ 94% 9 (56) 11 (69)

Unknown 1 (6) 1 (6)

Retractions on examination 0.65

None 4 (25) 3 (19)

Mild 4 (25) 7 (44)

Moderate/severe 8 (50) 6 (38)

Wheezing on examination 9 (56) 10 (63) 0.72

Received antibiotics during prehospitalization
visit

1 (6) 2 (13) 0.99
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processes, including respiratory infections and asthma (4).
Indeed, emerging evidence, mostly from in vitro investiga-
tions, has shown that RSV infection, through altering
microRNA expression in airway epithelium, modulates
immune responses in the airway (33,34). Although the
research on rhinovirus infection-related perturbations in
microRNA expression is sparse, we recently examined the
microRNA expression in the nasal airway of 10 young
children (aged o3 years) with PCR-confirmed rhinovirus
infection, and found that rhinovirus infection induces
miR-155 when compared with 10 healthy children (7). In
the current study, we also demonstrate upregulation of this
microRNA among infants with rhinovirus infection in

comparison to those with RSV. Studies have shown that
miR-155 has critical roles in type-2 pro-asthmatic responses,
including Th2 priming (35), type-2 immune polarization (36),
modulation of responses to IL-13 (37), and allergic airway
inflammation (38). Our study corroborates previous reports
linking respiratory virus infection, microRNA-related

Table 1 Continued

Variables Rhinovirus RSV P-value

n=16 n=16

Received corticosteroids during pre-
hospitalization visit

4 (25) 1 (6) 0.33

Hospitalization course

Intensive care useb 3 (19) 3 (19) 0.99

Hospital length-of-stay ≥ 3 days 7 (44) 9 (56) 0.48

Hospital length-of-stay (day), median (IQR) 2 (2–4) 3 (2–3) 0.68

IQR, interquartile range; n/a, not applicable; RSV, respiratory syncytial virus.
Data are number (%) of infants unless otherwise indicated. Patient characteristics, clinical presentation, and hospital course were compared by virus using χ2-test, Fisher’s exact
test, or Wilcoxon rank-sum test, as appropriate.
aDefined as an infant having cough that wakes him/her at night and/or causes emesis, or when the child has wheezing or shortness of breath without cough.
bDefined as admission to intensive care unit and/or use of mechanical ventilation (continuous positive airway pressure ventilation and/or intubation).

PC1 (32.3%)

PC3 (7.6%)

RV RSV

PC2 (12.5%)

Figure 1. Principal coordinates analysis (PCoA) plot comparing nasal
airway microRNA profiles in infants with rhinovirus bronchiolitis and
those with RSV bronchiolitis. To show the differences in nasal airway
microRNA profiles among infants with bronchiolitis, PCoA plot based on
the Bray–Curtis distance was generated. Each dot represents the overall
microRNA expression in each infant. The distance between infants
indicates their dissimilarity. The PCoA revealed that infants cluster
together according to their viral etiology. In addition to 16 samples with
rhinovirus and 16 with RSV, 6 technical replicates were also included in
the analysis. RSV, respiratory syncytial virus; RV, rhinovirus.

RSV

–4 –2 0 2 4

RV

Figure 2. Unsupervised hierarchical clustering of the expression of
identified microRNAs in nasal airway of infants with bronchiolitis. The
heatmap of 2,758 microRNAs that are identified in the nasal airway was
generated using the Spearman’s rank correlation similarity and the
Ward’s clustering algorithm. The microRNA expression profiles almost
completely separated infants with rhinovirus bronchiolitis from those
with RSV bronchiolitis. The color bar indicates the standardized
expression of each microRNA to a mean of 0. Upregulated microRNAs
have positive values and are displayed as red. Downregulated
microRNAs have negative values and are displayed as blue. The
differences in microRNA expression between rhinovirus and RSV are
summarized in Supplementary Table S2 online. RSV, respiratory
syncytial virus; RV, rhinovirus.
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immune modulation, and asthma. Our data extend these prior
studies by demonstrating that rhinovirus infection-related
microRNA signatures enhance the NFκB signaling pathway in
infants during an important period of lung development
(median age of 3 months).
The clinically relevant implication that rhinovirus infection-

related perturbation of microRNA expression and activated
NFκB signaling pathway may impact acute (e.g., bronchiolitis
severity) and chronic (e.g., development of childhood asthma)
bronchiolitis morbidity warrants further clarification. Multi-
ple studies have reported that rhinovirus infection not only
activates the NFκB signaling pathway (8–11), but also
subsequently induces airway hyperresponsiveness (12). In
addition, activation of the NFκB signaling pathway within the
airway epithelium has been implicated in asthma pathobiol-
ogy (e.g., allergic airway inflammation, airway hyperrespon-
siveness, and fibrotic airway remodeling) in animal models
(39,40). In addition, studies of adults with asthma have
demonstrated that enhanced NFκB signaling, normally
transient due to concurrent induction of the inhibitor κB, is
persistent with resulting pathologic changes in immune cell
cytokine/chemokine secretion (41,42). Furthermore, Panga-
niban et al. (43), by profiling the microRNA expression in 35
adults with asthma, found that these patients had specific
microRNA signatures (e.g., upregulation of miR-155) and that
the targeted genes were involved in the NFκB signaling

pathway. These data suggest a potential causal relationship
between rhinovirus infection-induced programing of airway
cells (i.e., epigenetic changes via microRNAs inducing NFκB
signaling mediators), and the development of asthma in
young children. However, it is also possible that the altered
airway microRNA profiles and enhanced NFκB signaling in
the setting of rhinovirus infection may simply be a marker of
an individual who is prone to develop childhood asthma. In
addition, the underlying mechanisms linking severe virus
infection to incident asthma may differ among different
asthma phenotypes (e.g., atopic vs. nonatopic asthma) (2).
Notwithstanding this complexity, the identification of distinct
airway microRNA profiles and enhanced NFκB signaling
pathway in infants with rhinovirus is an important advance.
Several potential limitations of our study should be taken into

account. First, bronchiolitis involves inflammation of the lower
airway from which specimen sampling is ethically and
technically challenging in infants. Although our study was based
on the nasal airway samples, the literature has reported strong
correlations between upper and lower airway virology (44), gene
expression (19,20), and inflammatory mediators (21). Therefore,
the microRNA and inflammatory profiles in the nasal airway are
likely indicative of those in the lower airways. Second, as our
samples were not cell-based, we did not measure NFκB activity
per se. Nevertheless, we measured the gene expression for the
components of NFκB signaling pathway, as well as the cytokines

Extracellular space

a b

Cytoplasm

Extracellular space

Cytoplasm

Alternate pathway
of NF& kappa;B

activation

Proteasomal
processing

Alternate pathway
of NF& kappa;B

activation

Proteasomal
processing

NucleusNucleus

Figure 3. NFκB signaling pathway in the nasal airway comparing infants with rhinovirus bronchiolitis to those with RSV bronchiolitis. (a) Predicted
up- and downregulation of target transcripts in the NFκB signaling pathway. The canonical pathway for NFκB signaling was highly ranked as a target
for the microRNAs in infants with rhinovirus bronchiolitis compared to those with RSV bronchiolitis. The green color indicates predicted
downregulation of transcripts targeted by differentially expressed microRNAs in the nasal airway of infants with rhinovirus bronchiolitis compared to
those in infants with RSV; the red color indicates predicted upregulation. Genes are targeted by multiple microRNAs. (b) Measured up- and
downregulation of target transcripts in the NFκB signaling pathway via RT-PCR.
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(e.g., IL-10, IL-13) for inflammatory mediators induced by
NFκB. Third, the observed differences in microRNA profiles
may be attributable to potential differences in cellular profiles by
virus. However, we removed cellular RNAs by filtering cells.
Fourth, the present study design precluded us from examining
the relation between longitudinal patterns of the microRNA-
mediated airway immune modulation and respiratory health in
children (e.g., development of asthma). To address this question,
the study population is currently being followed to 6 years of age
with nasal airway specimen sampling at multiple time points.

Fifth, we did not have the data of a “control” group, such as
healthy infants without respiratory virus infection. Yet, the study
objective was not to evaluate the role of microRNA on the
development of bronchiolitis (yes/no), but to determine the
virus-specific pathobiology involving airway microRNAs within
infants with bronchiolitis (rhinovirus vs. RSV). Sixth, while the
current study demonstrated the findings to be consistent by
examining both predicted and measured gene expression,
external validation would be necessary to confirm these
observations. Lastly, we must generalize our findings cautiously

a Flod change:

Flod change:b

Figure 4. Integrated analysis of microRNA and mRNA expressions of NFκB signaling pathway in nasal airway of infants with bronchiolitis. Treemap of
predicted microRNA–target (mRNA) interaction was depicted by the use of miRTarVis, which identifies microRNA–mRNA pairs with an expression
value. Normalized, background-subtracted microRNA–mRNA expression profile data were imported into miRTarVis (rhinovirus infection compared to
RSV infection). The color gradient indicates the magnitude of the fold change in microRNA and mRNA expression (red, upregulation; blue,
downregulation). The size (area) of each box represents the frequency of that finding. The shape is designed to automatically fit into the overall
structure of the figure. (a) Pairs of upregulated microRNAs (in red) and downregulated mRNA (in blue). Notably, infants with rhinovirus bronchiolitis
had upregulation of multiple microRNAs (e.g., hsa-miR-149-3p, hsa-miR-197-3p, hsa-miR-197-5p, and hsa-miR-296-3p) targeting NFKBIB, thereby
predicting the downregulation of NFKBIB, a gene encoding inhibitor κB family. (b) Pairs of downregulated microRNAs (in blue) and upregulated
mRNA (in red). Notably, infants with rhinovirus bronchiolitis had downregulation of multiple microRNAs targeting RELA, thereby predicting the
upregulation of RELA, the gene encoding RelA (one of the proteins in the NFκB family).
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beyond infants who had severe bronchiolitis. Nonetheless, our
data remain highly relevant for 130,000 children hospitalized for
bronchiolitis in the US each year (1).

CONCLUSIONS
In this multicenter cohort study of infants hospitalized with
bronchiolitis, we found that nasal airway microRNA profiles
differ between the two most common viruses causing bronch-
iolitis, rhinovirus, and RSV. Our data also demonstrated that
infants with rhinovirus infection had an altered microRNA
profile that is predicted to enhance the NFκB signaling pathway.
Conversely, infants with RSV infection had a microRNA profile
that is predicted to have a downregulated NFκB signaling
pathway. These findings were validated by the observation that
microRNA signature in rhinovirus infection is associated with
measured upregulation of NFκB genes and downregulation of
IκB family genes. In addition, infants with rhinovirus had higher
levels of NFκB-induced type-2 cytokines (IL-10 and IL-13)
compared to those with RSV infection. In conjunction with prior
studies, our data suggest a potential mechanism linking
rhinovirus infection and bronchiolitis-related chronic morbid-
ities—i.e., rhinovirus infection-induced programing of airway
cells, via epigenetic changes involving microRNAs, induces NFκB
signaling mediators and unique immune response profiles. Our
data should facilitate further mechanistic investigations to
disentangle the complex web of viral pathogens, microRNA
regulation, and host immune responses in the airway of young
children with bronchiolitis.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at
http://www.nature.com/pr
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