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Abstract
Understanding the basis of regeneration of each tissue and organ, and incorporating this knowledge into clinical treatments
for degenerative tissues and organs in patients, are major goals for researchers in regenerative biology. Here we provide an
overview of current work, from high-regeneration animal models, to stem cell-based culture models, transplantation
technologies, large-animal chimeric models, and programmable nuclease-based genome-editing technologies. Three-
dimensional culture generating organoids, which represents intact tissue/organ identity including cell fate and morphology
are getting more general approaches in the fields by taking advantage of embryonic stem cells, induced pluripotent stem cells
and adult stem cells. The organoid culture system potentially has profound impact on the field of regenerative medicine. We
also emphasize that the large animal model, in particular pig model would be a hope to manufacture humanized organs in
in vivo empty (vacant) niche, which now potentially allows not only appropriate cell fate identity but nearly the same
property as human organs in size. Therefore, integrative and collaborative researches across different fields might be critical
to the aims needed in clinical trial.

Introduction

Tissues and organs in the body perform essential bioactivity
over the life. A sensory nervous system such as brain and
retina play roles in recognition and visual functions.
A digestive system, which consists of the gastrointestinal
tract plus the accessory organs of digestion (tongue, salivary
glands, pancreas, liver, and gallbladder) is critical to
maintain a homeostasis, including a nutrient uptake.
A circulation system such as heart, kidneys, and vasculature

is also important for a fluid circulation, including cells,
nutrients, gases and waste products. Loss of those systems
by accidents and diseases could lead to life-threatening
(or lethal) problems and loss of life quality.

The self-renewal process including self-repair is known
to be essential for tissue turn over and tissue restoration
upon degeneration and injury. For the replacement or self-
restoration of damaged tissues important for homeostasis, a
better understanding of the mechanism of regeneration is
important. Over the last few decades, researchers have
investigated model species that have highly regenerative
tissues. To this end, we realize that the ability to return to
the embryonic state, alternatively a regenerative ability in
mammalian species is not as advanced as it is in fishes,
amphibians, and birds although the morphology, the cell
types, and the function of the several organs are relatively
conserved among vertebrates. Therefore, to improve clinical
treatments in regenerative medicine, we need to learn not
only about highly regenerative mechanisms but also about
those missing in less regenerative mammalian species, such
as humans. Generally speaking, in humans, the loss of a
body part requires external sources to partially replace and
recover the original function. One such approach is
transplantation-mediated replacement with full (or parts of)
organs from a donor. Since donor organs are in short
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supply, alternative approaches that allow us to produce
tissues and organs are needed.

Recent progress in the biotechnologies is providing new
approaches to regenerative medicine that mainly fall into
five categories: formation of tissues and organs from stem
cells or tissues in a dish [1–3], stem-cell derived humanized
organs in large animal models, three-dimensional (3D)
bioprinting using biocompatible materials [4], ex vivo
decellularization [5–7], and Xenotransplantation [8–10].
We do not discuss 3D bioprinting and decellularization
technologies in detail in this review.

The use of embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs) as the source of customized
organs has become much more achievable than it was
decades ago. For example, starting from a floating culture of
ESCs (or iPSCs) in serum-containing media, called
embryoid body culture, ESC/iPSCs can differentiate into
specific cell types with individual marker expression char-
acteristic of the three germ layers in vivo (Fig. 1). This
differentiation ability, or pluripotency, is fundamental and
essential for generation of desired tissues and organs.

Adult stem cells (ASCs), stem cells with a specific
lineage, also have a remarkable ability to generate tissues
with specific architecture when given an appropriate in vitro

environment (Fig. 1). Substantial progress in stem cell
culture techniques have been achieved recently, due to our
better understanding of development in vivo: cell-type
specification, embryonic cell-specific roles and crucial
genes have been discovered by gene loss- and gain-of-
function approaches. Thus, in vitro approaches using
primary cells (tissues/organs) and cell lines have seen
advances in how we manipulate and culture specific cells,
tissues and organs using defined conditions to maintain their
fate (or lineage) during growth.

There have been some remarkable developments in the
use of human patient-derived cells as well. These stem cells
are now considered to be a potentially valuable resource
for regenerative approaches, as the problems of immune
rejection and quantity of supply would be avoided.
However, some roadblocks still remain, such as the fact that
patient-derived cells are likely to have intrinsic genetic
disorders that should be rescued or modified before their
treatment.

Programmable nuclease-based genome editors, or so-
called genome editing, are now recognized as a realistic
genetic tool for curing diseases that are difficult to treat
using currently available technologies. Genome editors are
developing rapidly and in a diverse array of contexts. Zinc

Fig. 1 Stem cell resources and experimental models using in vitro
culture. a In normal development, a zygote becomes a blastocyst,
which contains an inner cell mass (ICM), a body proper. Through a
gastrulation, the ICM generates three germ layers: ectoderm, meso-
derm, and endoderm. These layers further develop (or differentiate)
into each organ until adulthood. Embryonic stem cells (ESCs) are
derived from the ICM in the blastocyst. Induced pluripotent stem cells
(iPSCs) can be generated from adult cells, such as dermal, blood, and
photoreceptor cells, using Yamanaka factors (reprogramming factors)
through a reprogramming process. b These pluripotent stem cells can

be maintained in culture conditions and have an ability to differentiate
into the three germ layers in response to specific stimulation such as
growth factors. Adult stem cells (ASCs) have a restricted ability to
generate specific tissues or organs in vitro with their original identity. c
As an example, pluripotent stem cell (PSC)-derived eye organoids
have been used in several experimental models, such as eye specifi-
cation, morphogenesis, dorsal (D ventral (V) patterning, transdiffer-
entiation, and disease models. NR, neuroretina; RPE, retinal pigment
epithelium
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Fig. 2 In vitro and in vivo organ generation, and genome editing.
a There are three genome-editing tools, ZFNs, TALENs, and CRISPR/
Cas9. Taking advantage of genome-editing technologies in several
different ways will allow us to perform better experiments, and lead to
better ideas for regenerative medicine. Validation of the roles of gene
function: gain of function and loss of function. Further modulation of
additional genes potentially rescue an abnormal phenotype: functional
repair in genome level. By modulating essential factors found in vivo
studies in a time- and dose-dependent manner, stem cell-derived tissues
and organs can be now generated even in vitro. Genome-edited
pluripotent stem cells (PSCs) are also useful for monitoring a specific
cell lineage tracing, disease models, and developmental analysis, which
might be one of the standard ways for understanding pathogenesis. The
resultant knowledge obtained in vitro would help to perform better
treatments in future clinical setting. b A in vivo humanized organ

model, a large animal pig lacking (or modifying) an essential gene for
pancreas development provide an empty (vacant) niche for human
pluripotent stem cell-derived pancreas production in vivo. The
genome-editing technology would be combined with the organ
production technology outside a human body. Then, a better
transplantation method for each organ would be necessary once
individual humanized organs are mature enough to implant into
patients. hiPSC, human iPSC. c Human-derived somatic cells can be
used for iPSCs generation using reprogramming methods. iPSCs and
adult stem cells (ASCs) from patients would have a cause of disease,
which now can be repaired by genome-editing tools in clinical use.
Even drug treatment might lessen the severity of diseases. Recent
efforts are underway to develop in vivo genome editing, for more direct
and local repair in the human body. ESCs, embryonic stem cells; RPE,
retinal pigment epithelium
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finger nucleases (ZFNs), transcription activator-like effector
nucleases (TALENs) and clustered regularly interspaced
short palindromic repeats (CRISPR)-CRISPR associated
proteins 9 (CRISPR/Cas9) are well-known tools [11]. They
can create random insertion or deletion of DNA, precise
base pair changes, large deletions, inversions or duplica-
tions. Alternatively, a knock-in of a therapeutic transgene at
a desired location, chromosomal rearrangement, epigenetic
modifications, and gene activation (or repression) in tran-
scriptional level is also possible [12–20] (Fig. 2a).

Among them, CRISPR/Cas9 is currently the most pop-
ular tool [21, 22], and the winner of Science Magazine’s
Breakthrough of the 2015 Year award [23]. Since CRISPR
loci were first described in 1987 [24], this system has been
discovered to be necessary for acquired resistance against
phages in bacteria and archeae [25]. It has turned out to be a
bacterial immune system, which cleaves an invading for-
eign DNA in a sequence-specific manner [26]. Several
experimental applications have been described [27] and
they would be beneficial for biology, biotechnology, and
biomedicine [28]. Further potential applications of the
CRISPR/Cas9 tool include human gene therapy, viral gene
disruption, agriculture, and next-generation therapies [28].

Arbitrarily introduced mutations using genome-editing
tools alone showed recapitulation of several developmental
abnormalities and diseases, including cancer. In contrast, by
using a single-stranded oligonucleotide or double-stranded
oligonucleotide as a repair template, these genome-editing
tools have great potential for repairing patient-derived
genetic mutations. To date, genome editing has worked in
most well-studied and genome-deciphered model organisms
and mammalian culture cells, including human cells
[29–40]. The protocol for each of these model organisms is
now being standardized. The combination of genome-
editing and stem cell technologies might be quite essential
for regenerative medicine.

In this review, we first describe regeneration (using the
retina as an example). Then we focus on several in vitro
methods for organ generation, and finally we discuss in vivo
organ generation in large animal models and the use
of genome-editing technologies as potential approaches
toward regeneration and regenerative medicine.

Tissue and organ regeneration

Tissue turn over normally requires tissues or cells equiva-
lent to bipotent or multipotent stem cells in order to provide
newly generated cells. Regeneration of a complex system
where acquisition of stemness from quiescent cells through
a dedifferentiation (or reprogramming) process can be seen
in the retina [41–44] and heart [45, 46]. The process

requires reversion of a differentiated cell to a less differ-
entiated state to allow proliferation or differentiation.

Mammalian species have limited regenerative capacity
while some non-mammalian species like fishes and
amphibians are known to have remarkable regenerative
abilities. In highly regenerative model animals, heart and
retina are used to identify genes and fundamental mechan-
isms for basic understanding of the regeneration; perhaps
those mechanisms are useful for mammalian regeneration
[47, 48].

Although the liver in mammals has a regeneration ability
that is equivalent to other species after injury [49], the heart
in mice has a restricted ability to regenerate after damage by
neonatal day 7 [50, 51]. Recently Kenneth D. Poss and
colleagues provided new insight in heart tissue regenera-
tion, identifying tissue regeneration enhancer elements
(TREEs) upon injury suggesting TREEs would be useful to
modulate the regenerative potential of vertebrate organs
[52]. Introduction of genes important for regeneration, such
as Nrg1, using enhancer-based targeting by genome editing,
might trigger repair processes even in the mammalian heart
[52, 53].

The retina is an important sensory organ in vision. Vision
loss by retinal degeneration is a critical issue that reduces
the quality of life. There are three resources for the potential
regeneration of retina (reviewed in [54–56]). First, retinal
pigment epithelium (RPE) located outside the retina could
transdifferentiate into the retina only in the amphibian upon
removal of retina [57–59]; transdifferentiation is including a
regenerative phenomenon where one cell type converts to
another [60]. Second, ciliary marginal zone (CMZ) func-
tions located at the rim of the retina are known to provide
retinal neurons to the peripheral retina in larval and adult
fish [61, 62]. Interestingly, several reports imply the stem-
like cells in the mammalian CMZ as well [63–65]. The
CMZ is also suggested to have contribution in regeneration
of the damaged retina in frogs and fish [61, 66]. However,
the CMZ seems to be present in the post-hatched bird but
not in the adult and absent in mammals (reviewed in ref.
54). Third, the literature indicates that Müller glial cells are
the major glial component of the retina, which is one of the
last retinal cell types to be born during development
[67, 68]. Müller glia are the only cells to span all retinal
layers and have processes that contact neighboring neurons
and form part of the outer and inner limiting membranes.
Thus, Müller glia are well positioned to monitor retinal
homeostasis and contribute to retinal structure and function
[67]. Mammalian Müller glia have the capacity to locally
de-differentiate following retinal injury to become multi-
potent retinal progenitors, preferentially supplying photo-
receptors [69] (reviewed in ref. 70). In this process, Wnt
signaling plays a crucial role [71] and this mechanism might
share the similar signaling found in fish [43]. Interestingly,
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the level of photoreceptor cell death-induced Müller glia
proliferation is different even among mouse strains (12961/
SvJ vs C57BL/6), correlating with the gene expression
changes of Cyclin D1 and Nestin [72]. It suggests that the
gene regulation could control this damage-induced Müller
glia proliferation. Although mammalian Müller glia are still
insufficient for fully repairing a damaged retina [67], Müller
glial cell-dependent spontaneous regeneration is remarkable
in some species such as fish [73]. The mechanisms behind
the retina regeneration are also getting more understood in
the high regenerative species.

Recent work in Medaka fish showed that a single neu-
rogenic factor, Atoh7, directs Müller glia into proliferation
[74]. Atoh7 forces quiescent radial glia into neurons
through Notch signaling activation, which is also involved
in the maintenance of the glial fate [74, 75]. mTor signaling
has been shown to support the formation of proliferating
Müller glia progenitor cells in the chick [76]. Comparing
the methylation profiles of Müller glia and Müller glia
progenitor cell provides DNA methylation landscape during
cellular reprogramming and regeneration [77].

Therefore, key to a successful self-repair process in the
adult mammalian retina upon injury or degenerative disease
is controlling Müller glial regenerative function around in
the degenerative regions. Surprisingly, a very recent report
showed indeed the mechanisms underlying neuronal
regeneration in adult mouse retina [78], suggesting that the
regeneration of mammalian retina is not impossible. A
promising strategy would be to analyze differences between
the transcriptomes and epigenomes of fish and mammalian
Müller glia (and Müller glia progenitors) [67, 79]. A recent
novel technology, in vivo genome editing, might be an
important tool for future approaches to promote a self-repair
program in mammalian retina [80] (perhaps by combining
with the recent finding that stimulates neuronal regeneration
in the retina [78]). A combination of approaches will be
needed to probe essential signaling pathways and define
those signals that trigger conversion of tissue or specific
cells to multipotent retinal progenitors.

In vitro tissue and organ generation

Multicellular organisms have been shown to have a self-
organizing ability at the cellular level. Plant calluses, for
example, are formed by de-differentiated cells that have
tissue-forming ability accompanied by organogenesis
[81–83]. In animals, dissociated primitive multicellular
sponge cells are able to grow and differentiate into a whole
sponge [84]. Single-cell suspension culture can reconstitute
chick organs [85]. Tumor-derived multi-potent stem cells
have tissue-forming potential and these tissues are called
embryoid bodies [86]. A single human keratinocyte

can generate a stratified squamous epithelium where pro-
liferating and differentiating cells are in a basal layer and
upper layer, respectively [87, 88]. The development of
growth media has been the basic principle of in vitro tissue
culture. Historical aspects of cell, tissue and organoid cul-
ture, and their potential applications have been extensively
described by Lancaster and Knoblich [89], and Clevers
[90].

Organoids are in vitro 3D tissues and organs derived
from stem cells or parts of tissues, which have bipotent,
multipotent, or pluripotent cells. They also show self-
renewal and differentiation capacities in response to a cul-
ture environment. Organoid formation is mostly driven by
self-organization in a minimal growth factor condition. The
organoids typically consist of more than two different cell
types and exhibit morphogenetic features closely mimicking
an equivalent tissue and organ in vivo. Studies using in vitro
systems tend to benefit from an abundant source, produc-
tion, and easier manipulation.

ESCs can be derived from the inner cell mass of
blastocysts, and iPSCs [91, 92] can be reprogramed from
dermal fibroblasts [93], blood cells [94, 95], RPE [96], and
photoreceptor cells [97, 98] using reprogramming factors
(Yamanaka factors) (Fig. 1). Because the inner cell mass
generates three germ layers—ectoderm, mesoderm, and
endoderm—though gastrulation, its in vitro derivative also
shows three-germ-layer differentiation (Fig. 1a, b). iPSCs
show a similar extent of differentiation ability to ESCs [99].

These new stem cell technologies facilitate several lines
of research related to regenerative medicine. For example,
transplantation of ESC- and iPSC-derived retina has been
shown to restore vision in rd1 end-stage retinal degeneration
mice [100]. A clinical trial is underway, in which human
ESC-derived RPE is transplanted into patients with age-
related macular degeneration (RPE degeneration leading to
photoreceptor loss) [101–103]. An advanced personal
medicine technique is being tested, involving autologous
transplantation of RPE from iPSCs that were generated
from patient skin [104].

Repairing damaged heart from the limited regenerative
capacity of the adult mammal is a major challenge in
medicine. For this purpose, the use of stem cells would be
helpful for understanding and enhancing cardiac regenera-
tion [105, 106]. iPSC-derived multi-layered cardiovascular
cell sheets that consist of cardiomyocytes, endothelial cells,
and vascular mural cells, showed long-term survival of the
cell graft to the heart in vivo [107]. Artificial manipulation
of cell composition and geometry brings an ideal framework
for scale-up to pre-clinical studies [108]. These results
suggest that tissue engineering is a promising approach in
regenerative medicine [109–111].

There are a wide variety of applications for stem cell
technologies; infectious disease models using Helicobacter
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pylori and Zika virus [112, 113], a congenital disease
model, microcephaly [114], and an acquired disease model,
cancer [115]; Toxicology models such as liver organoid
testing hepatocyte function act as a gold standard
[116–118]. These remarkable advances hold hope for the
future of gene therapy and regenerative medicine as more
personalized treatments.

Another aspect of stem cell research useful in funda-
mental research is that it reflects species-specific
differences such as organ size, which are hard to analyze
via two-dimensional culture systems [112, 114, 119–121].
Unique features of the human brain such as the inner fiber
layer, outer subventricular zone, and outer radial glia
[122–125], can now be generated in vitro [114]. The period
of differentiation in the human brain is longer than that in
the mouse [114, 126–128]. These human-specific features
likely contribute to human brain-specific identity and
functions [129]. Advances in this line of research would be
supported by genome-editing technologies as powerful
tools for basic and biomedical research [130, 131].

We have been trying to develop an ESC-derived brain
and retina organoid system in 3D culture using mouse and
human embryonic stem cells, asking what are the minimum
or essential factors during several phases of brain devel-
opment. To date, there are several successful methods
for generating cerebral cortex, neuroretina, hypothalamus,
and adenohypophysis from mouse embryonic stem cells
[126, 128, 132–135]. After we developed mouse ESC
methods, further efforts substantially advanced the 3D
technologies that enable us to make human brain parts,
including retina, in a dish [119, 127, 136, 137]. A key to
developing in vitro organogenesis methods is visualizing
key marker gene expression in living condition. To do this,
researchers typically design a fluorescent reporter system,
which is knocked-in at the specific gene loci by genome-
editing tools, ZFN, TALEN, and CRISPR/Cas9, resulting in
fluorescent cell lines such as Lim3-Venus (pituitary
primordium marker), RX-Venus (neuroretina marker),
CRX-Venus (photoreceptor progenitor marker), FOXG1-
Venus (telencephalic progenitor marker), PAX6-Venus
(cells in cortical ventricular zone), Fgf5-mTurquoise2
(epiblast marker), Six3-Tomato (early rostral brain
marker), and Irx3-Venus (early caudal brain marker)
[119, 127, 135, 138, 139]. This knock-in reporter approach
would facilitate performing real-time monitoring including
lineage tracing [119], enrichment of specific cell popula-
tions, and identification of the reporter-expressing cells
when transplanted in vivo in order to rescue hypopituitar-
ism, endocrinological disorders [135]. Using RX-Venus and
CRX-Venus human ESCs, a ciliary margin-like stem cell
niche was found in optic cups culture [65]. A few other
examples showing fluorescent reporter knock-in in plur-
ipotent stem cells have also been described [140–144] (also,

see a recent report, showing a 2A-peptide-based knock-in
strategy for human iPSC [145]). The genome editing-
assisted reporter knock-in strategy might support the iden-
tification of specific cell types responsible for self-repair and
regeneration.

Because of its simple but remarkable window into
self-organization, the 3D method approach is not only
providing benefits for regenerative medicine but also
modeling organ formation from a new angle in which the
intrinsic aspects of organ development—self-assembly,
self-patterning and self-morphogenesis—can be observed
[146, 147]. For instance, successful live-imaging and live-
manipulation of in vitro eye organogenesis allows us to find
essential factors involved in the processes [133]. Similar
visualization of in vivo processes is extremely difficult in
mammals.

Following is a list of recent findings related to the
formation of eye organoids (Fig. 1c). Using a diencephalic
tissue culture condition, we showed that optic vesicle
specification requires Wnt signaling [148]. Using an
atomic force microscope and laser-ablation techniques,
we demonstrated that relaxation of retina is a critical step
for optic cup morphogenesis [133, 149]. By temporally
and locally manipulating the Wnt gradient formation,
we found that a dorsal–ventral retinal pattern self-forms
[150]. Genome-wide analysis and bioinformatics analysis
indicates transcriptional profiling of retina and RPE using a
transdifferentiation assay [151]. We also provided the first
example of a freezing-mediated tissue-storage model using
ZFN modified-reporter knock-in human ESCs [119].

Organoids derived from adult stem cells

The adult body has several different tissue (organ)-specific
ASCs, which retain the ability to self-renew and replenish
all of the cell types as seen in their intact condition through
a damage-repair process [152]. Understanding and manip-
ulation of adult stem cells are quite essential for the future
of basic and clinical studies in terms of developmental and
regenerative aspects.

New technologies allow us to recapitulate organ forma-
tion in vitro from ASCs, as their identities are similar to the
organ from which they were derived (Fig. 1b). ASC-derived
organoids appear to be genetically stable even when cul-
tured over long periods of time [152]. Like pluripotent stem
cells, the genomic stability issue is considerably important
when researchers try to use ASCs in in vitro culture.
Keeping genomic information intact is essential for organ
regeneration and to be a safe cell source for regenerative
medicine [3].

There have been numerous reports that several ASC-
derived organoids can be generated in vitro (reviewed in
ref. 152): liver [153, 154], pancreas [155, 156], stomach
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[157, 158], fallopian tube [159], prostate [160, 161], taste
buds [162], and salivary gland [163].

Notably, ASCs require a specific culture environment to
mimic their original environment supporting growth and
stemness [3]. Even more important is the role of ASCs in
regeneration upon damage. They are quiescent until needed
and there are biopotent (liver or skin etc) and multipotent
(intestinel, stomach, mammary stem cells, hair follicle, and
so on) cell states, which are dependent on individual cell
types (reviewed in ref. 164). Controlling these essential
aspects of ASCs in vitro promises the success of transla-
tional research [3]. For instance, organoids can be grafted
onto injured intestinal regions, and liver organoids differ-
entiate into functional hepatocytes upon transplantation [3].

Thus, the ASC organoid culture system is a useful tool
for genetic diseases, host–pathogen interactions and cancer
progression models [152]. Furthermore, the combination of
ASC-organotypic culture and CRISPR/Cas9-based gene
editing would be obviously powerful; genome-editing
technologies appear to be useful particularly in genome
level manipulation [155, 165]. An initial attempt was per-
formed using intestinal organoids that contained a patient-
derived mutation [166] and subsequent work showed a
sequential cancer progression by introducing oncogene-
related genes [115]. Some of the ASC-derived organoids
have been shown to treat the disease portion by transplan-
tation [167–169] (reviewed in refs. 152, 170). Thereby,
lineage-restricted stem cells would be expected to be useful
for efficient and rapid production of tissues and organs. In
this way studying in vitro models that recapitulate human
development and pathologies is essential for promoting our
understanding of the pathogenesis of diseases, which can
lead to the discovery of novel therapeutic paradigms.
Genome-editing tools would further widen the potential of
ASC technologies.

Vasculature-associated organoid assembles

To support organ growth and homeostasis, the vasculature
system performs indispensable roles in vivo. Because
organoids show a limited growth potential and maturation
level, a main limitation was thought to be the lack of
nutrient support from blood vessels. Takebe et al.
[171, 172] first demonstrated the creation of a vascularized
and functional human liver from human iPSCs by trans-
plantation in an in vivo environment. They succeeded in
recapitulating organogenetic interactions between adult tis-
sues, endothelial and mesenchymal cells. This technology
highlights liver-specific functions such as protein produc-
tion and human-specific drug metabolism [171, 172]. This
discovery has two important aspects: (1) functional
maturation of pluripotent stem-cell-derived tissue requires

vascular support and (2) in vivo derived vasculature can be
a powerful source of vascular support by connecting with in
vitro-derived vasculature. They further strived to obtain a
generalized method for organ bud formation from diverse
tissues, such as kidney, pancreas, intestine, heart, lung, and
brain by carefully modulating mechanical properties of
culture environments [173]. However, whether that vascu-
lature could function physiologically as a stem cell niche for
complex brain organoids to support growth and maturation
remains unknown. In vivo studies show that direct cell–cell
contact with the vascular niche is important for neural stem
cell function [174–177]. Therefore, combining several
complex in vitro tissues and organs might reproduce better
physiological function and provide an advantageous envir-
onment for drug screening in regenerative medicine.

Humanized organ generation in vivo

Due to the limitation of availability of donors for organ
allotransplantation, exploring other potential resources is
essential. In the case of using stem cell technologies, gen-
erating organs sufficient for supporting the original function
should be considered. It is important that organ size is
appropriately fitted for patients. Therefore, to overcome
issues with appropriate size, shape and matured functional
human-organ requirements upon implantation of organs in
the clinical setting is attracting attention. As we mentioned
above, even in in vitro conditions, stem cell-derived human
organoids reflect species-specific features, such as size and
shape. However, complete matured and vascularized human
organs are not yet available by in vitro methods. Alter-
natively, several differences between mice and humans limit
the mouse as a model of human disease [178].

Work toward resolving these issues is going to open a
new paradigm. It utilizes a chimeric system between closely
related species so that cells of a different origin have a less
possibility to be rejected in the host environment. Regarding
an experimental system of chimerism, there is pioneering
work in close species, such as chick–quail, rat–mouse, and
sheep–goat [179–182], and more closely related species,
Mus musculus-Mus caroli, M. caroli-M. musculus and Bos
taurus–Bos indicus [182, 183]. The successful production of
interspecies chimaeras is largely dependent on the matching
of the species origin of the trophectoderm derivatives and
that of the maternal uterus [184–186].

In addition, owing to a dramatic increase in large animal
models, mechanisms of pathology and regenerative medi-
cine are becoming more understood and use of those models
has become central to new therapeutic strategies [178] and
the large animals have been already shown to be engineered
(reviewed in refs. 187–189). The domestic pig is one of the
most popular animal models for agricultural and biomedical
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research. Recently, the pig system has enabled researchers
to generate several human organs, overcoming not only the
number of organs but also organ size (reviewed in ref. 190)
(Fig. 2b). In this large animal model, genetically modified
chimaeric pigs are used in order to replace pig organs with
humanized organs by combining three powerful techniques:
generation of interspecies chimaeras, manipulation of
pluripotent stem cells, and genome editing. Based on their
initial principle established in rodents [191, 192], Nakauchi
and colleagues produced a method that potentially allows
human PSC-derived organ generation in the vacant space
(or an empty developmental niche; see also the interspecies
chimerism between mouse and rat [193]) of a non-rodent
large animal, the pig [194]. Belmonte and colleagues indeed
showed an interspecies chimerism between human and pig
using human iPSC, suggesting the possibility of xeno-
generating human tissues and organs in the pig [195] (see
also a review paper [186]). Pigs with severe combined
immunodeficiency (SCID) that were generated by the
TALEN system are also available, perhaps providing a
useful model for xenotransplantation [196]. There are a
couple of potential examples reviewed in detail by Nakau-
chi of “genetically engineered organ niches” [186, 197].

Interestingly, work showed an example of combining
somatic cell nuclear transfer (SCNT) and direct injection of
the CRISPR/Cas9 ribonucleoprotein complex which led the
generation of a growth-hormone receptor binding protein-
10 (GRB10) ablated pig [198]. As such the CRISPR/Cas9
system-mediated genome-modified pigs have also been
reported, raising the possibility of their utility for applica-
tion in regenerative medicine [199, 200]. Although, so far,
larger animals such as dogs, pigs, and primates have been
used [178, 201, 202], this work suggests that the pig can
serve as a better bridge between rodents and primate models
in order to study human diseases [198]. This system might
provide an unlimited number of humanized organs. Addi-
tional examples of genome editing in pigs are available
elsewhere [198, 203–208].

Conclusions

In the near future, a rapid and reliable method may be
developed that allows genetically engineered organ niches
in large animal models using genome-editing tools. How-
ever, ethical issues need to be carefully considered [209]. In
particular, human central nervous system (CNS)-derived
organs require special attention. It is quite difficult to use
large animal models in order to generate humanized CNS.
We can not also exclude the possibility of having new
hybrid human–pig viruses in this system. Therefore, trans-
plantation technology without the large animal technology
is still a realistic way to replace degenerated portions with

autologous patient-derived tissues and organs, which are
optionally repaired by genome-editing technology. Alter-
natively, direct repair of patient degenerative portions by
genome-editing technology would be a future challenge
(Fig. 2c). To accomplish this ambitious aim, a compre-
hensive understanding of the essential differences between
less regenerative species and highly regenerative species
would be needed by taking account of evolutionary changes
(or aspects) of organ regeneration. It may provide the basic
idea to develop alternative strategies to stimulate self-repair
in the low regenerative organs. Stimulating regenerative
ability by introducing a genome modification, introducing
exogenous cells/tissues (enhancing endogenous regen-
erative ability), or a combination of both could eventually
be possible in less regenerative tissues and organs with the
assistance of advanced genome editing tools and stem cell
technologies.
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