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Abstract
Cells are minimal functional units in biological phenomena, and therefore single-cell analysis is needed to understand the
molecular behavior leading to cellular function in organisms. In addition, omics analysis technology can be used to identify
essential molecular mechanisms in an unbiased manner. Recently, single-cell genomics has unveiled hidden molecular
systems leading to disease pathogenesis in patients. In this review, I summarize the recent advances in single-cell genomics
for the understanding of disease pathogenesis and discuss future perspectives.

Single-cell genomics to dissect the biology
of heart failure

The heart constantly responds to hemodynamic overload.
Cardiomyocytes, which are the principal components of the
pump function of the heart, are required to maintain cardiac
homeostasis by adapting appropriately to this stress. How-
ever, sustained exposure to pathological stress disrupts the
adaptive mechanisms of cardiomyocytes, leading to heart
failure. Understanding how each cardiomyocyte responds to
various stimuli at the single-cell level will help to elucidate
the pathogenesis of heart failure.

Cardiomyocytes are cylindrically shaped, around 120-μm
long and 30-μm wide. Because of this large size, See et al.
decided to isolate nuclei from cardiomyocytes using a
microfluidics system and conducted single-nucleus RNA-
sequencing (RNA-seq) to reveal the activation of cell-cycle
regulators and novel long noncoding RNAs in diseased
cardiomyocytes [1]. To obtain expression profiles from
single cardiomyocytes, we modified the Smart-seq2 proto-
col [2, 3], which amplifies full-length cDNA for single-cell
transcriptome analysis and established a system to quanti-
tatively analyze the transcriptomes of manually picked live
single cardiomyocytes [4].

We applied this system to a mouse model of pressure
overload-induced heart failure and obtained single-cell

transcriptomes of cardiomyocytes isolated during the pro-
gression of heart failure [4]. Weighted gene co-expression
network analysis, which extracts gene modules co-
expressed across cells [5], identified nine gene modules
and, using the expression profiles of these gene modules,
we classified cardiomyocytes into seven cell states. Pseu-
dotime analysis with the machine learning algorithm
Monocle [6] identified two distinct trajectories for adaptive
and failing cardiomyocytes. Chromatin immunoprecipita-
tion using an anti-H3K27ac antibody followed by sequen-
cing revealed the regulatory elements of the gene modules
and inferred the upstream transcription factors associated
with cardiomyocyte hypertrophy and failure. Through these
analyses, we revealed that DNA damage and p53 signaling
are activated at the branch point for failing cardiomyocytes,
and this enabled us to generate cardiomyocyte-specific p53
knockout mice and show that p53 is essential for the
induction of failing cardiomyocytes.

To recover the spatial information lost in single-cell
RNA-seq analysis, we established a single-molecule RNA
in situ hybridization assay, which enables quantification of
each mRNA at the single-cell level [7], and revealed the
spatial heterogeneity of failing cardiomyocytes induced by
pressure overload [8]. Furthermore, the single-cell RNA-seq
profiles of cardiomyocytes isolated from patients with heart
failure also validated the presence of failing cardiomyo-
cytes, characterized by the activation of DNA damage
response genes, only in patients showing poor prognosis
[4]. We also performed molecular pathology analysis using
cardiac biopsy samples from patients with heart failure
before treatment to demonstrate that the level of DNA
damage in cardiomyocytes determines clinical prognosis
and treatment response [9]. Recent single-cell RNA-seq
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analysis in heart failure biology has also revealed the
involvement of inflammatory cells [10] and the anatomical
expression profiles of disease-causing genes [11, 12].

We and others have applied single-cell genomics and
used cell-type classification, trajectory inference, marker
identification, spatial analysis, and clinical assessment to
further our understanding of disease pathogenesis. How-
ever, conventional single-cell RNA-seq analysis is not
sufficient for obtaining the information necessary for a
deeper understanding of molecular behavior. Recently,
several studies have opened new avenues by focusing on
cell–cell communications, spatial single-cell omics, barcode
lineage tracing, single-cell multi-omics, multiple perturba-
tions with single-cell readout, immunoprofiling, and clinical
application (Fig. 1). In this review, I discuss the recent
advances and future perspectives of single-cell genomics in
our efforts to understand development, physiology, and
pathophysiology.

Cell–cell communications

Several types of cells interact with each other via a variety
of signaling molecules to generate organ-level functions. By
integrating the single-cell expression profiles of ligands and
receptors in developing lung tissue with a ligand and
receptor interaction database, Cohen et al. generated a
cell–cell communication map and identified eosinophils as
essential signal mediators in the lung [13]. Eosinophils
express IL1RL1, which binds to IL-33 secreted from
alveolar epithelial type II cells, and secrete IL-6 or IL-13 to
activate macrophages and maintain the immune

environment in the lung. Vento-Tormo et al. leveraged the
expression profiles of ~70,000 single cells from first-
trimester placentas with matched maternal blood and
decidual cells, revealing the cellular organization of the
decidua and placenta and the interactions that are critical for
placentation and reproductive success [14]. They identified
three types of decidual natural killer (dNK) cells:
dNK1 cells secrete CSF1 to transduce signals to extravillous
trophoblasts and macrophages; dNK2 cells secrete XCL1 to
transduce signals to extravillous trophoblasts and dendritic
cells; and dNK3 cells secrete CCL5 to transduce signals to
extravillous trophoblasts and macrophages. They also
developed CellPhoneDB, an algorithm implemented by
Python, to enable cell–cell communication analysis that
considers the structural composition of ligands and recep-
tors [15].

Giladi et al. reported an approach for sequencing phy-
sically interacting cells (PIC-seq), which integrates cell
sorting of physically interacting cells (PICs) with single-cell
RNA-seq data, to comprehensively investigate the func-
tional nature of PICs and identify the signaling molecules
associated with these interactions [16]. In the developing
lung, PICs of regulatory T cells and dendritic cells speci-
fically express IL12b, whereas PICs of regulatory T cells
and monocytes express CCL6. However, this method needs
detailed consideration of the conditions used and validation
of the identified signaling molecules by alternative
approaches.

Cell–cell communications also occur at the level of the
organism. Ma et al. obtained ~210,000 single-cell tran-
scriptomes from several organs (adipose tissue, aorta, kid-
ney, liver, skin, bone marrow, brain, and skeletal muscle)

Fig. 1 Overview of single-cell genomics to understand disease pathogenesis.
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from young and aged rats with or without calorie restriction
and analyzed the changes in cellular distribution and cell-
type-specific expression profiles [17]. They revealed an
increase of cell types associated with immunity and
inflammation during aging across whole organs, which was
alleviated by calorie restriction. Using SCENIC, an algo-
rithm for inferring transcriptional networks [18], they also
identified a decrease in the activity of specific transcription
factors such as Cebpd and Cebpb during aging, which was
also alleviated by calorie restriction. Cell–cell communica-
tion analysis uncovered an increase in the interactions
associated with endothelial cells during aging, which was
also rescued by calorie restriction.

Spatial analysis

Cell–cell communications can be assessed more accurately
by in situ analysis with preservation of spatial information
in tissues. Individual mRNA molecules can be detected
accurately in cells with single-molecule fluorescence in situ
hybridization (FISH) [19]. Eng et al. developed sequential
FISH and quantitatively analyzed the mRNAs of 10,000
genes in the cortex, subventricular zone, and olfactory bulb
of the mouse brain at the single-cell level [20]. This method
not only allows unbiased identification of cell classes and
their spatial organization but also reveals subcellular mRNA
localization patterns and ligand receptor pairs across
neighboring cells. By using the FISH method, Su et al.
demonstrated simultaneous imaging of more than 1000
genomic loci and nascent transcripts of more than 1000
genes together with landmark nuclear structures, revealing
that transcription activity correlates with the local enrich-
ment of active chromatin, which consists of long-range
chromatin interactions [21].

Multiplexed proteome approaches also enable quantita-
tive analysis of protein expression levels in situ at the
single-cell level [22]. Goltsev et al. developed a highly
multiplexed cytometric imaging approach, termed co-
detection by indexing (CODEX), in which all target pro-
teins are labeled simultaneously using DNA-conjugated
antibodies and antibody identity is revealed by iterative
exchange of fluorophore-conjugated DNA [23]. By ana-
lyzing the effect of the cellular neighborhood on the
expression of receptors in splenic immune cells, they
revealed the emergence of erythroblasts and disease-specific
regulatory T cells and identified their interactions with
dendritic cells. Schürch et al. re-engineered the CODEX
method to be compatible with formalin-fixed paraffin-
embedded tissue, conducted simultaneous profiling using
56 protein markers in 140 tissue regions from 35 patients
with advanced-stage colorectal cancer, and identified 9
conserved, distinct cellular neighborhoods, which are a
collection of components characteristic of the immune

tumor microenvironment in colorectal cancer [24]. Jackson
et al. used mass cytometry imaging analysis, which allows
labeling of all target proteins with heavy-metal-conjugated
antibodies and quantification by point-by-point ablation of
the samples coupled to mass spectrometry, and simulta-
neously quantified 35 biomarkers in ~170,000 cells on tis-
sue specimens from nearly 350 patients with breast cancer
[25]. Spatial single-cell analysis identified the phenotypes
of tumor and stromal cells and their interaction patterns;
using them, they stratified the patients into 20 subtypes,
which were critically associated with clinical course.

Rodriques et al. developed Slide-seq, a method for
transferring tissue sections onto a surface covered with
DNA-barcoded beads in known positions [26]. Using this
method, they revealed the spatial localization of several
types of cells in the cerebellum and hippocampus and cell-
type-specific spatial responses in the cerebral cortex. At 3 h
after injury, early response genes such as Fos and ribosomal
RNAs are activated at the injured position; at 3 days after
injury, cell-cycle-related genes are activated in microglia
and macrophages in remote regions; at 2 weeks after injury,
these cells are replaced to fill the injured position. These
cells also showed the activation of genes involved in the
development of oligodendrocytes.

Lundeberg et al. developed spatial transcriptomics, an
approach similar to Slide-seq [27], and performed spatial
gene expression analysis of human heart development [28].
This method is now accessible as Visium from 10× Geno-
mics. They revealed the distinct behavior of cardiac neural
crest cells, marked by ISL1 and STMN2, and Schwann cell
precursors, marked by ALDH1A1. Both cells emerge in the
outflow tract, but only the latter localizes in the sub-
epicardial interstitium during heart development. Even in
the outflow tract, the former emerges only in the early
phase, whereas the latter is found only in the late phase.

Recently, a variety of tissue clearing methods have been
developed that can be applied to single-cell protein
expression analysis in several organs [29]. Although most
protein expression analyses are based on immunostaining,
clearing-enhanced 3D imaging combines tissue clearing
with single-molecule RNA in situ hybridization [7] to
enable RNA localization analysis in transparent organs [30].
These tissue clearing methods need careful consideration,
such as how the clearing reagents should be selected and
whether the antibodies or probes are well distributed
throughout the tissue.

Trajectory analysis

Trapnell et al. developed Monocle, an algorithm-based
application for pseudotime analysis and inference of the
linear or bifurcating trajectories of an individual cell’s
progress through differentiation [6, 31]; to the current
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version is Monocle 3 [32, 33]. The algorithm reduces
dimensions by using uniform manifold approximation and
projection (UMAP) [34], clusters neighboring cells into
groups with the Leiden method, and extracts the trajectories
connecting groups. They applied this algorithm to single-
cell transcriptomes of over 200,000 cells isolated from
developing mouse embryos and identified more than 500
cell types and 56 developmental trajectories [32]. They also
used the single-cell expression profiles of 86,000 cells
isolated from developing Caenorhabditis elegans and
identified 502 cell types and 1068 developmental trajec-
tories [33]. They further showed that the integration of
UMAP and Louvain clustering enables the identification of
gene groups that correspond to protein complexes and
pathways [35].

Additional information, such as the ratio of reads map-
ped to introns and exons, RNA metabolism, and protein
expression profiles, enables trajectories to be inferred more
accurately. On the basis of the concept that transcriptionally
active cells have more unspliced mRNAs, La Manno et al.
developed Velocyto, an algorithm for inferring trajectories
using the ratio of reads mapped to introns and exons [36].
They applied this algorithm to single-cell RNA-seq data
from the mouse hippocampus and identified several trajec-
tories from neuroblasts to the subiculum and astrocytes.
They also revealed the kinetics of transcription during
human embryonic glutamatergic neurogenesis.

Because Monocle and Velocyto infer cellular trajectories
by using single-cell information derived only from
RNA molecules, these algorithms cannot accurately recon-
struct trajectories in cell-state transitions such as
endothelial–mesenchymal transition. Recently, on the basis
of the concept that daughter cells generally have the same
genome, lineage tracing analysis using DNA barcode
technology, a method of lineage identification that uses a
short section of re-writable DNA, has been advancing [37].
Approaches for generating DNA barcodes include
retrovirus-induced genome insertion [38, 39], Cre/loxP-
mediated recombination [40–42], and CRISPR/Cas9-medi-
ated DNA double-strand breaks [43–46]. Several approa-
ches can read out barcode information as mRNA molecules,
enabling the simultaneous detection of gene expression and
lineage information [42, 45, 46]. Alemany et al. performed
the simultaneous analysis of gene expression and lineage
tracing in zebrafish and revealed that epidermal and
mesenchymal cells in the caudal fin arise from the same
progenitors and that osteoblast-restricted precursors can
produce mesenchymal cells during regeneration after injury
[45, 47]. They also identified resident immune cells in the
fin with a distinct clonal origin from other blood cell types.
Bowling et al. established the CRISPR array repair lineage
tracing mouse line and uncovered a clonal bottleneck in the
response of hematopoietic stem cells to injury [46]. Pei et al.

developed the PolyloxExpress mouse line, which shows Cre
recombinase-dependent DNA barcoding that allows the
parallel readout of barcodes and transcriptomes in single
cells, revealed the molecular signature of differentiation-
inactive hematopoietic stem cells, and demonstrated that
these cells can undergo symmetric self-renewal [42].
Frieda et al. established a synthetic system, termed memory
by engineered mutagenesis with optical in situ readout,
which is based on a set of barcoded recording elements
(scratchpad). The scratchpad altered by CRISPR/Cas9-
based mutagenesis can be read out through multiplexed
single-molecule RNA FISH, enabling the simultaneous
detection of lineages and gene expression profiles
in situ [48].

Single-cell multi-omics analysis

The simultaneous detection of DNA sequences and RNA
expression profiles enables the identification of disease-
causing variants and their association with gene expression.
There are novel methods to simultaneously extract infor-
mation from DNA and RNA [49–51]. By physically
separating mRNA from genomic DNA using oligo-dT bead
capture and performing whole-transcriptome and whole-
genome amplifications, Macaulay et al. developed a method
that can detect thousands of transcripts in parallel with the
genetic variants captured by DNA-seq data from single cells
[49, 50]. Dey et al. reported a quasilinear amplification
strategy to quantify genomic DNA and mRNA from single
cells without physical separation and showed that genes
with high cell-to-cell variability in transcript numbers gen-
erally have lower genomic copy numbers, suggesting that
copy number variation may drive variability in gene
expression among individual cells [51].

The detection of single nucleotide variants using abun-
dant single-cell RNA-seq data is an applicable and cost-
effective method for identifying expressed variants, infer-
ring sub-clones, and deciphering genotype-phenotype rela-
tionships [52]. Enge et al. simultaneously analyzed single
nucleotide variants and gene expression profiles from 2544
pancreatic cells from 8 donors and found that islet endo-
crine cells from older donors show increased levels of
transcriptional noise and potential fate drift, which was
considered to be induced by oxidative stress. By deter-
mining the mutational history of individual cells, they
revealed a novel mutational signature in healthy aging
endocrine cells [53]. Nam et al. developed genotyping of
transcriptomes, a method to integrate genotyping with
droplet-based single-cell transcriptomes, and used it to
profile ~40,000 CD34+ cells from patients with CALR-
mutated myeloproliferative neoplasms, identifying an
association between the activation of the unfolded protein
response and NF-κB pathway with CALR mutations [54].
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Given that gene expression is regulated by the epigen-
ome, simultaneous analysis of the transcriptome and epi-
genome leads to a deeper understanding of gene regulation.
There are methods to simultaneously detect combinations of
RNA expression and DNA methylation [55], chrom-
atin accessibility, DNA methylation, and RNA expre-
ssion [56–58], chromatin accessibility and RNA expression
[59–61], protein–DNA interactions and RNA expression
[62, 63], and high-order chromatin structure and RNA
expression [64]. Argelaguet et al. performed single-cell
nucleosome, methylation, and transcriptome sequencing of
1105 cells from the onset of gastrulation in mouse embryos
[58]. Cells committed to the mesoderm and endoderm
undergo widespread coordinated epigenetic rearrangements
at enhancers, which are driven by 10–11 translocation-
mediated demethylation and an accompanying increase of
chromatin accessibility. By contrast, the DNA methylation
and chromatin accessibility landscape of ectodermal cells is
already established in the early epiblast. Mateo et al.
established optical reconstruction of chromatin architecture
(ORCA), a method that can accurately detect the positions
of DNA and RNA using array-derived oligonucleotide
probes in the nucleus [64]. ORCA analysis of Drosophila
embryos identified cell-type-specific physical borders
between active and Polycomb-repressed DNA, and
Polycomb-independent borders. Deletion of the Polycomb-
independent borders leads to ectopic contacts between
enhancers and promoters, resulting in aberrant gene
expression and developmental defects. Katzenelenbogen
et al. developed intracellular staining and sequencing (i.e.,
INs-seq) that enables simultaneous detection of the intra-
cellular signaling and protein state as well as the cellular
transcriptional profiles, and identified Arg1+ Trem2+ reg-
ulatory myeloid cells, which control tumor growth [65].

Multiple perturbations with single-cell
readout

A combination of CRISPR/Cas9-based genetic screening and
single-cell omics analysis enables comprehensive and
detailed functional analyses [66–70]. Norman et al. integrated
not only CRISPR interference (CRISPRi) but also CRISPR
activation (CRISPRa) with single-cell RNA-seq to present an
analytical framework for interpreting high-dimensional
landscapes of cell states, and enabled the ordering of reg-
ulatory pathways, classification of genetic interactions, and
mechanistic elucidation of synergistic interactions, including
the cooperative function of CBL and CNN1 for driving ery-
throid differentiation [71]. By titrating expression using
CRISPRi and a series of single-guide RNAs (sgRNAs) in
human myeloid leukemia K562 cells, Jost et al. showed that
a reduction in the mRNA levels of HSPA5 and GATA1 by

~50% is sufficient to induce a near maximal transcriptional
response and growth defect, whereas a larger reduction of
other genes is required for a similar effect, suggesting the
sharp transition in cellular behavior at gene-specific expres-
sion thresholds [72]. Replogle et al. reported direct capture
Perturb-seq, a method in which expressed sgRNAs are
sequenced together with single-cell transcriptomes, and
allowed pooled single-cell CRISPR screens to be paired
easily with combinatorial perturbation libraries, improving
the efficacy of CRISPRi and CRISPRa [73].

Multiple perturbations with single-cell readout has
been developed to analyze epigenetic regulation [74],
enhancer–promoter interactions [75], protein expression
[76], and morphological and phenotypical assessments [77].
Rubin et al. developed the Perturb-assay for transposase-
accessible chromatin (ATAC) to detect gRNA information
and chromatin accessibility simultaneously, using it to
assess the synergistic effects of various transcription factors
and epigenomic regulators on epigenomic regulation [74].
Gasperini et al. generated a gRNA library targeting 5920
enhancer regions in K562 cells, performed CRISPR/Cas9-
mediated perturbations followed by single-cell RNA-seq,
and identified 664 enhancer–promoter interaction pairs [75].
By using targeted in situ sequencing of perturbations,
Feldman et al. integrated CRISPRi with optical assessment
[77]. By screening a set of 952 genes for involvement in
NF-κB signaling by imaging the nuclear translocation of
RelA (p65), they identified the importance of Mediator
complex subunits such as MED12 and MED24 in regula-
tion of the duration of p65 nuclear retention.

Immunoprofiling

The diversity of the vertebrate adaptive immune system is
based on somatic rearrangements of V(D)J genes encoding
the T-cell receptor (TCR) α and β chains; therefore,
simultaneous analysis of TCR sequence (clonality) and
gene expression from individual cells provides a deeper
understanding of molecular behavior in the adaptive
immune system. By integrating single-cell transcriptomes
with clonal information during the development of the
human thymus, Park et al. identified a strong bias in V(D)J
usage shaped by recombination and multiple rounds of
selection, including a TCRα V-J bias for CD8+ T cells [78].
Through performing single-cell RNA and TCR sequencing
of tumor and normal tissues and peripheral blood in patients
with different types of cancer, Wu et al. found that patients
who show clonal expansion of effector-like T cells in tumor
tissue as well as in peripheral blood respond well to anti-
PDL1 therapy [79]. Gate et al. integrated single-cell RNA-
seq with TCR-seq of peripheral blood mononuclear cells
and cerebrospinal fluid from patients with Alzheimer’s
disease and identified an association between clonally
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expanded CD8+ T effector memory CD45RA+ cells and
disease severity [80]. The machine learning algorithm
grouping of lymphocyte interactions by paratope hotspots
[81] and cloning and peptide screens demonstrated the
specificity of clonally expanded TCRs to two separate
Epstein–Barr virus antigens. Oh et al. conducted single-cell
RNA and paired TCR sequencing of 30,604 T cells from
seven patients with bladder cancer and found multiple
cytotoxic CD4+ T cell states that are clonally expanded
[82]. These CD4+ T cells can kill autologous tumors in an
MHC class II-dependent manner and are suppressed by
regulatory T cells. A gene signature of cytotoxic CD4+

T cells predicted the clinical response of patients with
metastatic bladder cancer treated with anti-PD-L1.

Stoeckius et al. developed cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq), a
method in which oligonucleotide-labeled antibodies are used
to measure the expression levels of surface proteins, which is
essential for immunoprofiling [83]. Granja et al. integrated
CITE-seq with single-cell ATAC-seq of leukemia cells from
patients with mixed-phenotype acute leukemia and showed
that CD69 activation, regulated by RUNX1, is associated
with poor prognosis [84]. Mimitou et al. established
expanded CRISPR-compatible CITE-seq, in which CITE-
seq was combined with a cell hashing method for multi-
plexing and double detection [85], 5′ capture-based cDNA
library generation for clonal analysis, and a system for the
direct and robust capture of sgRNAs, enabling the simulta-
neous analysis of RNA expression, protein expression,
clonality, perturbation, and cell labeling [86].

Clinical application and future perspectives

Single-cell genomics has been utilized for delineating the
molecular behavior of rare clinical samples and their rela-
tionship with patients’ phenotypes [87]. Velmeshev et al.
used single-nucleus RNA-seq of cortical tissue from
patients with autism and found that the synaptic signaling of
upper-layer excitatory neurons is affected in autism and that
dysregulation of specific groups of genes in cortico-cortical
projection neurons correlates with clinical severity [88]. The
causality of these genes was validated by large-scale exome
sequencing [89]. Mathys et al. analyzed single-nucleus
transcriptomes from the prefrontal cortex of patients with
varying degrees of Alzheimer’s disease pathology, high-
lighting myelination-related genes as pathogenic, and
revealed that the disease-associated changes emerge early in
pathological progression and are highly cell-type-specific,
whereas genes upregulated at the late phase are common
across cell types and involved in the global stress response
[90]. Kim et al. performed single-cell RNA-seq on skin and
blood samples from a patient with refractory drug-induced
hypersensitivity syndrome/drug reaction with eosinophilia

and systemic symptoms and identified JAK-STAT pathway
activation in memory CD4+ cells in which DNA from
human herpesvirus 6b is detected [91]. They also demon-
strated that tofacitinib, a JAK-STAT pathway inhibitor,
suppresses T-cell proliferation. Reyes et al. conducted
single-cell RNA-seq to profile peripheral blood mononuclear
cells and dendritic cells from patients with sepsis and
identified a unique subset of CD14+ cells in which FOS-Jun,
PU.1, and CEBP are activated to regulate immune-related
gene expression [92]. Smillie et al. generated a single-cell
atlas of the colonic mucosa from patients with ulcerative
colitis, identified IL13RA2+ IL11+ inflammatory fibroblasts
as being associated with resistance to anti-TNF treatment,
and deployed single-cell co-expression analysis to highlight
putative causal genes for inflammatory bowel disease [93].
By combining single-cell RNA sequencing with spatial
transcriptomics and single-cell pathology analysis, Ji et al.
defined the cellular composition and architecture of cuta-
neous squamous cell carcinoma and identified a tumor-
specific keratinocyte population that localized to a fibro-
vascular niche [94]. They also used in vivo CRISPR screens
to identify essential roles for specific tumor subpopulation-
enriched gene networks in tumorigenesis.

Further utilization of single-cell genomics analysis using
clinical samples to dissect pathology is advancing, but the
importance of bulk sample analysis, which does not require
specialized equipment and rigorous cell isolation and
enables the processing of many samples, will be main-
tained. There are algorithms to characterize cell-type com-
position across subjects from bulk RNA-seq data using
single-cell RNA-seq profiles as references [95–97]. Wang
et al. developed multi-subject single-cell deconvolution to
characterize cell-type composition from bulk RNA-seq data
of the kidney and revealed that the proportion of distal
convoluted tubule cells increases with disease progression
[95]. By using single-cell RNA-seq profiles to deconvolute
expression data from the Genotype-Tissue Expression
(GTEx) project, Donovan et al. discovered cell-type-
specific expression quantitative trait loci [97].

The batch effect, which is caused by differences in the
conditions of sample collection and preservation, the effi-
ciency of cDNA library synthesis, or the number of
sequencing reads, should be reduced as much as possible to
integrate multiple datasets for large-scale single-cell geno-
mics analysis. Data integration algorithms such as LIGER
[98], Seurat v3 [99], Scanorama [100], and Harmony [101]
have been developed and widely used to integrate not only
multiple single-cell RNA-seq datasets but also single-cell
RNA-seq datasets and single-cell epigenomic datasets (e.g.,
ATAC and DNA methylation) or spatial omics datasets.

In the near future, the number of studies integrating
single-cell genomics with deep phenotyping [102] or
assessing/predicting drug responses with single-cell
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genomics will increase [103–105]. After confirming the
conservation of the myeloid subsets in human and mouse
colorectal cancer, Zhang et al. used single-cell RNA-seq to
show that anti-CSF1R treatment preferentially depletes
macrophages with an inflammatory signature, but spares
macrophage populations that express pro-angiogenic/
tumorigenic genes, and that CD40 agonist treatment pre-
ferentially activates a specific dendritic cell population and
expands Th1-like and CD8+ memory T cells [106]. Sri-
vatsan et al. used a sample labeling (hashing) strategy that
relies on labeling nuclei with unmodified single strand DNA
oligonucleotides to develop single-cell combinatorial
indexing and applied it to high-throughput screens on three
cancer cell lines [107]. They profiled 649,340 single-cell
transcriptomes across 4608 independent samples in one
experiment and identified histone deacetylase inhibitors as
inducers of an acetyl-CoA-deprived state.

Histone modifications and alternative splicing are critical
for transcriptional regulation; therefore, the development of
methods to analyze them quantitatively at single-cell reso-
lution will lead to a deeper understanding of the molecular
mechanisms underlying transcriptional regulation in clinical
samples. Henikoff and colleagues developed cleavage under
targets and release using nuclease, which is an epigenomic
profiling strategy in which antibody-targeted controlled
cleavage by micrococcal nuclease releases specific
protein–DNA complexes into the supernatant for sequen-
cing, and reduced the number of cells required for epige-
nomic analysis [108, 109]. Hainer et al. applied this method
to nuclear samples and performed genome-wide analyses of
histone modifications and transcription factor binding at
single-cell resolution [110]. By using a protein A-Tn5
transposase fusion protein, Henikoff and colleagues devel-
oped cleavage under targets and tagmentation, in which
antibody-targeted controlled tethering of transposase is used
to generate fragment libraries, and enabled epigenomic
profiling of single cells [111]. Recently, Hagemann-Jensen
et al. developed Smart-seq3, which combines full-length
transcriptome coverage with a 5′ unique molecular identifier
RNA counting strategy, enabling the reconstruction of
thousands of RNA molecules per cell in silico [112]. Smart-
seq3 has greatly increased sensitivity compared to Smart-
seq2 and reconstructed isoform-specific RNA molecules,
providing the opportunity to investigate isoform-level RNA
quantification at the single-cell level.

Conclusion

As I have summarized in this review, single-cell genomics
has been combined with a variety of technologies and has
uncovered hidden molecular mechanisms in several biolo-
gical phenomena, including development, physiology, and

pathophysiology. In the near future, the integration of
multidimensional datasets obtained through single-cell
genomics approaches will have a major impact on biolo-
gical research and clinical pathology. I fully expect that the
implementation and expansion of single-cell genomics will
lead to vast improvements in the diagnosis, stratification,
and treatment of patients worldwide.
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